FIGURE 1–2. G protein–coupled receptors and G protein activation.



Your session has timed out. Please sign back in to continue.
Sign In Your Session has timed out. Please sign back in to continue.
Sign In to Access Full Content
Sign in via Athens (What is this?)
Athens is a service for single sign-on which enables access to all of an institution's subscriptions on- or off-site.
Not a subscriber?

Subscribe Now/Learn More

PsychiatryOnline subscription options offer access to the DSM-5 library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing PsychiatryOnline@psych.org or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

FIGURE 1–2. G protein–coupled receptors and G protein activation.All G proteins are heterotrimers consisting of , , and subunits. The receptor shuttles between a low-affinity form that is not coupled to a G protein and a high-affinity form that is coupled to a G protein. (A) At rest, G proteins are largely in their inactive state, namely, as heterotrimers, which have GDP (guanosine diphosphate) bound to the subunit. (B) When a receptor is activated by a neurotransmitter, it undergoes a conformational (shape) change, forming a transient state referred to as a high-affinity ternary complex, comprising the agonist, receptor in a high-affinity state, and G protein. A consequence of the receptor interaction with the G protein is that the GDP comes off the G protein subunit, leaving a very transient empty guanine nucleotide binding domain. (C) Guanine nucleotides (generally GTP) quickly bind to this nucleotide binding domain; thus, one of the major consequences of active receptor–G protein interaction is to facilitate guanine nucleotide exchange—this is basically the "on switch" for the G protein cycle. (D) A family of GTPase-activating proteins for G protein–coupled receptors has been identified, and they are called regulators of G protein signaling (RGS) proteins. Since activating GTPase activity facilitates the "turn off" reaction, these RGS proteins are involved in dampening the signal. Binding of GTP to the subunit of G proteins results in subunit dissociation, whereby the -GTP dissociates from the subunits. Although not covalently bound, the and subunits remain tightly associated and generally function as dimers. The -GTP and subunits are now able to activate multiple diverse effectors, thereby propagating the signal. While they are in their active states, the G protein subunits can activate multiple effector molecules in a "hit and run" manner; this results in major signal amplification (i.e., one active G protein subunit can activate multiple effector molecules; see Figure 1–11). The activated G protein subunits also dissociate from the receptor, converting the receptor to a low-affinity conformation and facilitating the dissociation of the agonist from the receptor. The agonist can now activate another receptor, and this also results in signal amplification. Together, these processes have been estimated to produce a 10,000-fold amplification of the signal in certain models. (E) Interestingly, the subunit has intrinsic GTPase activity, which cleaves the third phosphate group from GTP (G-P-P-P) to GDP (G-P-P). Since -GDP is an inactive state, the GTPase activity serves as a built-in timing mechanism, and this is the "turn off" reaction. (F) The reassociation of -GDP with is thermodynamically favored, and the reformation of the inactive heterotrimer () completes the G protein cycle.


Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Related Content
The American Psychiatric Publishing Textbook of Geriatric Psychiatry, 4th Edition > Chapter 5.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 1.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 8.  >
The American Psychiatric Publishing Textbook of Psychiatry, 6th Edition > Chapter 15.  >
The American Psychiatric Publishing Textbook of Psychiatry, 5th Edition > Chapter 26.  >
Psychiatric News
PubMed Articles
  • Print
  • PDF
  • E-mail
  • Chapter Alerts
  • Get Citation