0
0

Signaling Cascades Generally Utilized by Neurotrophic Receptors in the CNS

Sections

Excerpt

Your session has timed out. Please sign back in to continue.
Sign In Your Session has timed out. Please sign back in to continue.
Sign In to Access Full Content
 
Username
Password
Sign in via Athens (What is this?)
Athens is a service for single sign-on which enables access to all of an institution's subscriptions on- or off-site.
Not a subscriber?

Subscribe Now/Learn More

PsychiatryOnline subscription options offer access to the DSM-5 library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing PsychiatryOnline@psych.org or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

FIGURE 1–15. MAP (mitogen-activated protein) kinase signaling pathway.The influence of neurotrophic factors on cell survival is mediated by activation of the MAP kinase cascade and other neurotrophic cascades. Activation of neurotrophic factor receptors referred to as tyrosine receptor kinases (Trks) results in activation of the MAP kinase cascade via several intermediate steps, including phosphorylation of the adaptor protein Shc and recruitment of the guanine nucleotide exchange factor Sos. This results in activation of the small guanosine triphosphate–binding protein Ras, which leads to activation of a cascade of serine/threonine kinases. This includes Raf, MAP kinase kinase (MEK), and MAP kinase (also referred to as extracellular response kinase, or ERK). One target of the MAP kinase cascade is the ribosomal S6 kinases, known as RSK, which influences cell survival in at least two ways. RSK phosphorylates and inactivates the pro-apoptotic factor BAD (Bcl-xl/Bcl-2–associated death promoter). RSK also phosphorylates cAMP response element–binding protein (CREB) and thereby increases the expression of the anti-apoptotic factor Bcl-2 and brain-derived neurotrophic factor (BDNF). Ras also activates the phosphoinositol–3 kinase (PI3K) pathway, a primary target of which is the enzyme glycogen synthase kinase (GSK-3). Activation of the PI3 kinase pathway deactivates GSK-3. GSK-3 has multiple targets in cells, including transcription factors (-catenin and c-Jun) and cytoskeletal elements such as tau. Many of the targets of GSK-3 are pro-apoptotic when activated. Thus, deactivation of GSK-3 via activation of the PI3K pathway results in neurotrophic effects. Lithium inhibits GSK-3, an effect that may be, at least in part, responsible for lithium's therapeutic effects. These mechanisms underlie many of the long-term effects of neurotrophins, including neurite outgrowth, cytoskeletal remodeling, and cell survival.Source. Adapted from Gould TD, Chen G, Manji HK: "Mood Stabilizer Psychopharmacology." Clinical Neuroscience Research 2:193–212, 2002. Copyright 2002, Elsevier. Used with permission.

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Related Content
Articles
Books
The American Psychiatric Publishing Textbook of Psychiatry, 5th Edition > Chapter 4.  >
Gabbard's Treatments of Psychiatric Disorders, 4th Edition > Chapter 12.  >
Gabbard's Treatments of Psychiatric Disorders, 4th Edition > Chapter 23.  >
The American Psychiatric Publishing Textbook of Geriatric Psychiatry, 4th Edition > Chapter 16.  >
Psychiatric News
 
  • Print
  • PDF
  • E-mail
  • Chapter Alerts
  • Get Citation