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1  Item Factor Analysis Based on Item Response Theory 
 
IRT-based item factor analysis makes use of all information in the original categorical 

responses and does not depend on pairwise indices of association such as tetrachoric or 
polychoric correlation coefficients. For that reason it is referred to as full information item factor 
analysis. It works directly with item response models giving the probability of the observed 
categorical responses as a function of latent variables descriptive of the respondents and 
parameters descriptive of the individual items. It differs from the classical formulation in its 
scaling, however, because it does not assume that the response process has unit standard 
deviation and zero mean; rather it assumes that the residual term has unit standard deviation and 
zero mean. The latter assumption implies that the response processes have zero mean and 
standard deviation equal to   
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Inasmuch as the scale of the model affects the relative size of the factor loadings and 

thresholds, we rewrite the model for dichotomous responses in a form in which the factor 
loadings are replaced by factor slopes, jva , and the threshold is absorbed in the intercept, jc :   
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To convert factor slopes into loadings we divide by the above standard deviation and similarly 
convert the intercepts to thresholds:   
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Conversely, to convert to factor analysis units, we change the standard deviation of the residual 
from 1 to   
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and change the scale of the slopes and intercept accordingly:   
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jjvjva   and */=

jjjc  .   

 
For polytomous responses, the model generalizes as:   
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where 0=)( 0jj cz   and )(1=)( 1, 

jmjjjjmj czcz  as previously.  In the context of item 

factor analysis, this is the multidimensional generalization of the graded model introduced by 
Samejima (1969). 
 

 

2  Confirmatory Item Factor Analysis 
 
In confirmatory factor analysis, indeterminacy of rotation is resolved by assigning 

arbitrary fixed values to certain loadings of each factor during maximum likelihood estimation. 
An important example of confirmatory item factor analysis is the bifactor pattern for general and 
group factors, which applies to tests and scales with item content drawn from several well-
defined sub-areas of the domain in question. To analyze these kinds of structures for 
dichotomously scored item responses, Gibbons & Hedeker (1992) developed full-information 
item bifactor analysis for binary item responses, and Gibbons extended it to the polytomous case 
(Gibbons et.al., 2007). To illustrate, consider a set of n  test items for which a d -factor solution 
exists with one general factor and 1d  group or method-related factors. The bifactor solution 
constrains each item j  to a non-zero loading 1j  on the primary dimension and a second loading 

( dvjv ,2,=,  ) on not more than one of the 1d  group factors. For four items, the bifactor 

pattern matrix might be 
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 This structure, which Holzinger & Swineford (1937) termed the ``bifactor'' pattern, also 

appears in the inter-battery factor analysis of Tucker (1958) and is one of the confirmatory factor 
analysis models considered by Jöreskog (1969). In the latter case, the model is restricted to test 
scores assumed to be continuously distributed. However, the bifactor pattern might also arise at 
the item level (Muthén, 1989). Gibbons & Hedeker (1992) showed that paragraph 
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comprehension tests, where the primary dimension represents the targeted process skill and 
additional factors describe content area knowledge within paragraphs, were described well by the 
bifactor model. In this context, they showed that items were conditionally independent between 
paragraphs, but conditionally dependent within paragraphs. 

 
The bifactor restriction leads to a major simplification of likelihood equations that (1) 

permits analysis of models with large numbers of group factors since the integration always 
simplifies to a two-dimensional problem, (2) permits conditional dependence among identified 
subsets of items, and (3) in many cases, provides more parsimonious factor solutions than an 
unrestricted full-information item factor analysis. 

 
 

 
 

3  The Bifactor Model 
 
In the bifactor case, the graded response model is 
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where only one of the dv ,2,=   values of jva  is non-zero in addition to 1ja . Assuming 

independence of the  , in the unrestricted case, the multidimensional model above would 
require a d -fold integral in order to compute the unconditional probability for response pattern 
u ,  i.e.,  
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for which numerical approximation is limited as previously described. Gibbons & Hedeker 
(1992) showed that for the binary response model, the bifactor restriction always results in a two-
dimensional integral regardless of the number of dimensions, one for 1  and the other for 

1>, vv . The reduction formula is due to Stuart (1958), who showed that if n  variables follow a 

standardized multivariate normal distribution where the correlation jviv

d
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=  and iv  is 

nonzero for only one v , then the probability that respective variables are simultaneously less 
than j  is given by, 
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where jjj yc /=  , jjvjv ya /= , 1/222
1 )(1= jvjj aay  , 1=jvu  denotes a nonzero loading of item 

j  on dimension v  ( dv ,1,=  ), and 0=jvu  otherwise. Note that for item j , 1=jvu  for only 

one d . Note also that j  and jv  used by Stuart (1958) are equivalent to the item threshold and 

factor loading, and are related to the more traditional IRT parameterization as described above. 
 

This result follows from the fact that if each variate is related only to a single dimension, 
then the d  dimensions are independent and the joint probability is the product of d  
unidimensional probabilities. In this context, the result applies only to the 1d  content 
dimensions ( i.e.,  dv ,2,=  ). If a primary dimension exists, it will not be independent of the 
other 1d  dimensions, since each item now loads on each of two dimensions. Gibbons & 
Hedeker (1992) derived the necessary two-dimensional generalization of Stuart's (1958) original 
result as 
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For the graded response model, the probability of a value less than the category threshold 

jjhjh yc /=   can be obtained by substituting jh  for j  in the previous equation. Let 1=ijh  if 

person i  responds positively to item j  in category h  and 0=ijh  otherwise. The unconditional 

probability of a particular response pattern iu  is then 
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  (5) 
 
which can be approximated to any degree of practical accuracy using two-dimensional Gauss-
Hermite quadrature, since for both the binary and graded bifactor response models, the 
dimensionality of the integral is 2 regardless of the number of subdomains ( i.e., 1d ) that 
comprised the scale. 

 

4  Parameter Estimation 
 
Gibbons & Hedeker (1992) showed how parameters of the item bifactor model for binary 

responses can be estimated by maximum marginal likelihood using a variation of the EM 
algorithm described by Bock & Aitkin (1981). For the graded case, the likelihood equations are 
derived as follows. 

 Denoting  the v th subset of the components of  as 
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Then the log-likelihood is 
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where s  denotes number of unique response patterns, and ir  the frequency of pattern i . As the 

number of items gets large, s  typically is the number of respondents and 1=ir . Complete details 

of the likelihood equations and their solution are provided in Gibbons et.al. (2007). 
 

 

5  Trait Estimation 
 
In practice, the ultimate objective is to estimate the trait level of person i  on the primary 

trait the instrument was designed to measure. For the bifactor model, the goal is to estimate the 
latent variable 1  for person i . A good choice for this purpose (Bock & Aitkin, 1981) is the 

expected a posteriori (EAP) value (Bayes estimate) of 1 , given the observed response vector iu  

and levels of the other subdimensions d 2 . The Bayesian estimate of 1  for person i  is: 
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Similarly, the posterior variance of i1̂ , which may be used to express the precision of the EAP 

estimator, is given by 
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These quantities can be evaluated using Gauss-Hermite quadrature as previously described. 
 
In some applications, we are also interested in estimating a person's location on the 

secondary domains of interest as well. For the v th sub-domain, the EAP estimate and its 
variance can be written as: 
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6  Item Information Functions 

 
Suppose there are Ni 1,2,=  examinees, and nj 1,2,=  items. Let the probability of a 

response in category jmh 1,2,=  to graded response item j  for examinee i  with factor   be 

denoted by )(ijhP . We call )(ijhP  a category probability. )(ijhP  is given by the difference 

between two adjacent boundaries. 
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Let )(ijP  be given by the following multinomial probability model: 
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For simplicity, we drop the index i  in the subsequent notation. 
 

For the unidimensional model, Samejima (1969) defined the item information function 
(IIF) as:  
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The definition of information for the multidimensional case is the same as that given in the 
previous equation for the unidimensional case. However, in the multidimensional case, 
information corresponds to the composite of factors in the   space. At each point in the   space, 
the shape of multidimensional item response surface differs on the direction of the movement 
from the point. For the multidimensional model with a graded response item, Yao and Schwarz 
(2006) defined IIF as: 
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  is the vector of angles with the coordinate axes that define the direction taken from the   
point, and   is the directional derivatives in the direction  . 

 
In the bifactor model, the IIF expression can be written as:  
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where 1  and 2  are primary and secondary factors, respectively. Under the normal ogive model, 
the boundary probability is given by:  
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Then, the IIF has a specific form:  
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Given   and 21, jj aa  and jhc , the first term of the right hand side of (18)  
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is constant; so at a fixed point of  , )(jI  depends only on the direction  . Two special but 

important cases are 
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which is the item information associated with a change in a primary factor, but no change in a 
secondary factor, and 
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which is the item information associated with a change in a secondary factor, but no change in a 
primary factor. It should be noted that the previous two equations depend on both the primary 1  

and 1ja , and secondary 2  and 2ja  factors and loadings. 

 
When we are interested in estimating the IIF for 1  in the presence of other sub-domains, 

the sub-domains can be integrated out of the objective function. Suppose that for the purpose of 
computerized adaptive testing (CAT), 1  is our focus; however, 2  is also present in a bifactor 

model. In this case, we are interested in obtaining )( 1jI , which is a function only of 1 . To get 

)( 1jI , we integrate the previous bifactor IIF expression with the conditional distribution 
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which provides an estimate of the information associated with 1  averaged over the 2  
distribution. It is this expression that we have used as the basis for selecting items with maximal 
information in the CAT-DI. 
 

 
7  Computerized Adaptive Testing 

 
The bifactor model is extremely useful for CAT of multidimensional data. The 

conditional dependencies produced by the sub-domains can be directly incorporated in trait 
estimation and item information functions as shown in the previous two sections, leading to 
improved estimates of uncertainty and elimination of pre-mature termination of the CAT and 
potential bias in the estimated trait score. After each item administration, the primary ability 
estimate and posterior standard deviation (PSD) are re-computed, and based on the estimate of 

1 , the item with maximal information is selected as the next item to be administered. This 
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process continues until the PSD is less than a threshold value (e.g., 0.3). Once the primary 
dimension has been estimated via CAT, sub-domain scores can also be estimated by adding 
items from the sub-domain that have not been previously administered in evaluating the primary 
domain, until the sub-domain score is estimated with similar precision. 

 
When the trait score is at a boundary ( i.e.,  either the low or high extreme of the trait 

distribution), it may take a large number of items to reach the intended PSD (standard error) 
convergence criterion (e.g., se=0.3). In such extreme cases, we generally do not require such 
high levels of precision, since we know that the subject either does not suffer from the condition 
of interest or is among the most severly impaired. A simple solution to this problem is to add a 
second termination condition based on item information at the current estimate of the trait score 
and if there is less information than the threshold, the CAT terminates. The choice of the 
threshold is application specific and can be selected based on simulated CAT. A good value will 
affect only a small percentage of cases (e.g., <20%) and only be used in extreme (i.e., high or 
low) cases. 

 
For large item banks, there may be items that are too similar to be administered within a 

given session. In these cases, we can declare these as "enemy items" and not administer the other 
members of the list of enemy items when one of the members has been administered. The idea of 
enemy items can be extended to the longitudinal case to insure that the same respondent is not 
repeatedly administered the same items on adjacent testing sessions. 

 
CAT will often result in a subset of the entire item bank being used exclusively, because 

these items have the highest loadings on primary and sub-domains. Often the difference between 
the loadings of items that are selected by the CAT versus those that are not, are quite small and 
the items have similar information. To insure that the majority of the items in the item bank are 
administered, we can add a probabilistic component in which a selected item is only 
administered if a uniform random number exceeds a threshold. Typically a threshold of 0.5 
works well, but again, the exact choice can be based on simulated adaptive testing, in which the 
largest set of unique items are used without compromising the other characteristics of the 
measurement process ( i.e.,  average number of items administered and correlation with the total 
bank score). 
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