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Genomics Dataset: Gain and NonGain Studies

We first investigated the architecture of schizophrenia (5Z) using the Gain and
NonGain genome wide association studies (GWAS) as our main targets, which
are coherent case-control studies performed in a single lab under similar
conditions. This study contains data from 8023 subjects, 4196 patients and 3827
controls, combining data from Euro-American ancestry (EA) and African-
American ancestry (AA). Genotyping was carried using the Affymetrix 6.0
array, which assays 906,600 SNPs.

This study was originally performed in part at Washington University. Study
population, ascertainment, phenomics and genomic datasets, as well as other
information relative to this study can be accessed in the dbGaP web page
[http://www.ncbi.nlm.nih.gov/gap/] by their identifiers: phs000021.v3.p2 and
phs000167.v1.p1 for GAIN and NonGAIN projects, respectively.

The genotype data was codified in a matrix [SNPs x subjects], where the
columns and rows correspond to subjects and SNPs, respectively. In each cell of
the matrix, the value for the corresponding SNP and subject is assigned as 1, 2,
and 3 for the SNP allele values AA, AB, and BB, respectively. Missing values
were initialized by 0.

Data Cleaning



The quality control (QC) of the genotypic data was performed following the
steps detailed in references (1, 2), removing consequently all the SNPs satisfying
the next criteria:

1) SNP call rate < 95% in either GAIN or NonGAIN or combined datasets.

2) Hardy-Weinberg (HWE) p - value < 10E - 6 based on control samples in either
GAIN or NonGAIN or combined, (using only females for chr X SNPs).

3) Minor Allele Frequency (MAF) < 1% in combined dataset.

4) Failed plate effect test in GAIN, NonGAIN or combined dataset.

5) MENDEL errors > 2 in either GAIN or NonGAIN.

6) >1 disconcordant genotypes in either GAIN 29 duplicates or NonGAIN 32
duplicates.

7) >2 disconcordant genotypes for 93 (=3x31 trios) samples genotyped in both
GAIN and NonGAIN.

A total of 209,321 SNPs were excluded due to the restrictions described above
from the total 906,109 SNPs genotyped. Therefore, 696,788 SNPs passed the QC
filters. Then, 2891 SNPs were pre-selected to reduce the large search space using
the logistic association function included in the PLINK software suite (3), taking
sex and ancestry as co-variates, and establishing a generous threshold (p-value <
0.01). This threshold was established as 0.01 because this is approximately the
value used in the supplementary tables reported in (1) for AA, EA and AA-EA
analyses.

Methodology: a Divide & Conquer Strategy to Dissect a GWAS into the
Genotypic-Phenotypic Architecture of a Disease

Overview

To uncover the architecture of SZ we applied a “Divide & Conquer” strategy
(see Figures S1 and S2) that is commonly used in computer science to solve
complex problems such as those of proteomics and transcriptomics (4-7) and
cancer identification (8). Here we applied this strategy to dissect a single GWAS
into multiple genotypic and/or phenotypic networks (9), as an attempt to extract
the maximum information even from one dataset.

The “divide” step deconstructs genotypic and phenotypic data independently,
and explores multiple local patterns (i.e., SNP sets and phenotypic sets). We
used non-negative matrix factorization methods that have been applied to
characterize complex genomic (10-13) and social profiles (14, 15), and generalized
them to approach GWA data in a purely data-driven and unbiased fashion (16).
Thus, our systematic grouping strategy is not directed by previous knowledge of
polygenic involvement in SZ, does not limit subjects to only one SNP set (12, 13,
17), and does not predefine the number of SNP sets, avoiding possible biases and



assumptions that relationships are linear, regular, or random (9, 18-21). Unlike
other approaches (17, 22), we do not constrain SNP sets to a particular genome
feature or to be in linkage disequilibrium (LD), and the phenotypic status of the
subjects is not considered in SNP set formation (i.e., it is unsupervised (10, 11)).
After incorporating phenotypic status a posteriori within each set (e.g., cases and
controls), we establish their statistical significance with powerful and well-
founded test methods that perform the appropriate corrections for the use of
SNP sets (16, 17, 22-25), as well as provide an unbiased risk surface of disease to
test predictions (16, 26).

The “conquer” step consists of three stages. First, assembling the uncovered
local components of the genotypic architecture into genotypic networks of SNP
sets, where two SNP sets are connected if they (i) comprise different sets of
subjects described by similar sets of SNPs, (ii) and/or if they have similar sets of
subjects but characterized by distinct sets of SNPs, (iii) and/or if one of the two
SNP sets contains a subset of subjects and SNPs of the other SNP set. Second,
optimally combining (10, 11, 16, 27) the local components of the phenotypic
architecture (i.e., phenotypic sets) with the genotypic sets to expose the joint
genotypic-phenotypic architecture of the disease. Third, evaluating complexity
in the pathway from SNP sets to phenotypic sets; some connected SNP-set
networks may be candidates to converge to equifinality, whereas other disjoint
networks can lead to multifinality (i.e., recognizing a collection of diseases).

Finally, we carried out independent analyses to test for possible confirmations
of the heterogeneous architecture of SZ. We performed bioinformatics analysis
of genes related to each uncovered relationship and their molecular
consequences. Then, we computationally and clinically evaluated the genotypic-
phenotypic relations to determine sub-classes of the disease based on whether
the groups of SZ patients varied on a range of positive and/or negative
symptoms.

Method

Given a genotype database from a GWAS represented as a matrix [SNPs x
subjects], the method for dissecting the architecture of a disease is composed of 6
steps (Figure S1), where a SNP set is a sub-matrix (16) harboring subjects
described by a set of SNPs sharing similar allele values (16, 28):
1) Identify SNP sets (Implemented in our PGMRA web server (16)). Use a
Generalized Factorization Method (GFM) to dissect a GWAS into SNP sets (16,
28) (see below for a mathematical description of NMF). The GFM applies
recurrently a basic factorization method to generate multiple matrix partitions
using various initializations with different maximum numbers of sub-matrices k
(eg,2<k< vn), where # is the number of subjects, and thus, avoids any pre-



assumption about the ideal number of sub-matrices (see below for a rationale
about the use of unconstrained number of sub-matrices or clusters (16) ).
Particularly, we developed a new version of the basic bioNMF method (29)
termed Fuzzy Nonnegative Matrix Factorization method (FNMF) (16), and used
it as a default basic factorization method. FNMF allows overlapping among sub-
matrices, and detection of outliers (16). For each run of the basic factorization
method (2 < k < v/n), all sub-matrices are selected to compose a family of
genotypic SNP sets G_k ={G_k_i}, where 1 < i < k. Each G_k family, as well as all
families together G ={G_k} for all k, may include overlapped, partially redundant
and different-size sub-matrices.

2) Perform a statistical analysis of SNP sets (Accessed via our PGMRA web
server (16)). Use the R-project package SKAT (22, 28) to evaluate the significance
of each SNP set. We used the identity-by-state (IBS) as a kernel because the
analyzed variants are not rare but common, and therefore, using the “weighted
IBS” kernel would not be adequate (22, 28). Since the SNP sets can overlap, we
run each one separately. The sex and ancestry of the subjects were used as
covariates, and the default remaining parameters were utilized.

3) Map a disease risk function

3.1) Estimate the risk of a SNP set. Incorporate a posteriori the status of the subjects
in a weighted average of epidemiological risks function of all subjects in a
particular SNP set:
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with ST being the status of the instances (i.e., cases and controls) and Q the
weights given by epidemiologic risk of SZ in each SNP set (e.g., 0 and 1 for
controls and cases; 0.01, 0.1 and 1 for cases, relatives and controls, respectively)
(16).

3.2) Plot the genotype risk surface of the disease. Encode each SNP set into a 3-tuple
(X,Y,Z), where SNP sets are placed along the x- and y-axis using a dendrogram
based on their distances in the SNP (see step 4.1, Msnps) and subject (see step 4.2,
Miuwjes) domains, respectively, and Z is the risk variable calculated in (eqn. 1).
Interpolate and plot the surface by using the tgp and latticeExtra packages in R-
project, respectively.

4) Discover and encode relations among SNP sets into topologically organized
networks

4.1) Identify optimal and non-redundant relations between SNP sets based on their
shared SNPs and, separately, based on their shared subjects. Overlap of SNP sets
refers to overlap of SNP loci, which, in most of our cases leads also to sharing
allele values. The sharing of alleles is fully true when there is overlap of both loci
and subjects.



4.1.1) Co-cluster all G_k_i SNP sets within G by calculating the pairwise
probability of intersection among them using the Hypergeometric statistics (11,
27) (PInyp) on intersected SNPs: Plnyp (G_e_g, G_r_w) (eqn. 2, see below), where gq
and w are SNP sets generated in runs with a maximum of e and r number of sub-
matrices, respectively, and p in (eqn. 2) is the intersection of SNPs. Then, encode
all Plnyp-values, which encompass —in some extent— the distance between SNP
sets, in a square [SNP set x SNP set] matrix Msnps.

4.1.2) Repeat the former procedure based on intersected subjects and determine
the Misujects matrix.

4.1.3) Eliminate highly overlapped/redundant SNP sets, which may occur due to
the repetitive application of the factorization methods, by deleting all except one
SNP set where Max(Msnes[i, j], Msujects [1, j]) < 8, for all 7, j indices in the matrices.
Here, we used 6 = 10E-15.

4.2) Organize SNP sets sharing SNPs and/or subjects into subnetworks.

4.2.1) For each row i and column j in Msnps, Msnes[i, j] < @, connect the
corresponding SNP sets with a blue line, indicating that they share SNPs. In our
case, we established ¢ < 3E — 09. This value results from adjusting typical p-
value of 0.01 by the total number of pairwise comparisons between all possible
generated SNP sets [4094 X 4094, by using the Hypergeometric-based test (eqn.
2)], likewise a Bonferroni correction (30).

4.2.2) For each row i and column j in Msnps, Msuvjects[1, j] < ¢, connect the
corresponding SNP sets with a red line, indicating that they share subjects.

5) Identify genotype-phenotype latent architectures

5.1) Create a phenotype database. Dissect the questionnaire based on DIGS and the
Best Estimate Diagnosis into individual variables (see below, Data Reduction and
Appendix I, catalog of phenotypic features). The variables can be numerical or
categorical. For efficiency, in our case, each categorical variable was re-coded
into different variables with binary values. The phenotype data was codified in a
[phenotype features x subjects] matrix, where the columns and rows correspond
to subjects and phenotypic features, respectively. In our case, because the
phenotypic features from cases are different from those from the controls, we
only considered the cases.

5.2) Identify phenotype sets (Implemented in the PGMRA web server (16)). Use step 1)
with the phenotype database from 5.1) —instead of genotype database— to
identify phenotypic sets, where a phenotypic set is a sub-matrix (16) harboring
subjects described by a set of phenotypic features sharing similar values (i.e.,
P_h_j, where j is a phenotypic set generated in a run with a maximum of i
number of sub-matrices).

5.3) Identify genotypic-phenotypic relations. Co-cluster SNP sets with phenotype
sets into relations using the Hypergeometric statistics on intersected subjects,



where Rij = Plyp (G_k_i, P_h_j) (see below, eqn. 2), G_k_i and P_h_j are SNP and
phenotypic sets, respectively, and p in (see below, eqn. 2) is the intersection of
subjects. Relations Rij < T constitute the genotypic-phenotypic architecture of a
disease. The significance of the relations (T) was established by the p-value
(PIhyp) provided by the Hypergeometric-based test (see below, eqn. 2) (11, 27).

6) Annotate genes, and symptoms/classes of disease.

6.1) Map latent architectures to the genome. For each SNP set, we analyze all genes
being affected by each of the SNPs in a SNP set. This analysis includes the SNP
location with respect to a gene, the type and number of genes being affected by
one SNP (e.g., protein coding, ncRNA genes, and pseudogenes), the possible
transcripts being affected and the position where they are affected (e.g. coding
region, distance to stop codon, splicing site, intron, UTR, ect.), and finally
promoter and intergenic regions’ features are inspected for annotation if the SNP
does not overlap with a gene then regulatory. Moreover the possible molecular
consequences of each SNP over function is provided, as well as, the
corresponding allele values. Annotation information was obtained from the
Haploreg DB (31) and from the Ensembl (www.ensembl.org) and NCBI
(www.ncbi.nlm.nih.gov) web services (see below).

Once we obtain the information described above, we generate a list of relevant
genes that it is used to query the Nextbio web site (32) in order to find diseases
related to each gene. NextBio uses proprietary algorithms to calculate and rank
the diseases and drugs most significantly correlated with a queried gene, where
rank values are established relative to the top-scored result (score set to 100).
Therefore, although a low-scoring result might have less statistical significance
compared to the top-ranked result, it could still have real biological relevance. In
our case, out of all possible diseases, only the categories “Mental Disorders” and
“Brain and Nervous System Disorders” were considered from the “Disease
Atlas”.

6.2) Map latent architectures to disease symptoms or classes of disease.

6.2.1) Characterize each phenotypic feature by the type of symptoms that they
represent. First, explore the distribution of the phenotypic dataset by calculating
the principal components (PCA, Statistic Toolbox, Matlab R2011a) of the
Phenotypic sample, where the columns are subjects and the rows are the
phenotypic variables. Here we used as many PCs as needed to account for the
75% of the sample (5 PCs). In the sample with the phenotypic features as rows
and the PCs as columns, cluster the rows by using Hierarchical Clustering
(Correlation and Maximum as inter and intra-clustering measurements, Statistic
Toolbox, Matlab R2011a). This clustering process generates natural groups of
features constitution natural partition hypotheses about the phenotypic features
(Figure S5). Second, evaluate each phenotypic feature included in the phenotype



database using curated information from experts' and the literature (33, 34) and
individually classify each item based on the symptoms as purely positive (1),
purely negative (4), primarily positive (2) or primarily negative symptoms (3).
6.2.2) For each phenotypic set P_h_j related to a SNP set G_k_i in Ri;

re-code each phenotypic feature by their positive and/or negative symptoms in a
[Rij X phenotypic feature] matrix Msymptoms.

6.2.3) Cluster the encoded features by factorizing Msymptoms into sub-matrices using
a basic factorization method with a maximum number of sub-matrices defined
by the Cophenetic index (35).

6.2.4) Label the latent classes of the diseases. (Our current results provided 8
classes, see Figure 3B.)

Mathematical description of NMF

We consider a GWA data set consisting of a collection of Nm subject samples
(e.g., cases and controls), which we use to characterize a domain of genotypic
(SNPs) states of interest. The data are represented as an nv x Nm matrix M,
whose rows contain the allele values of the nm SNPs in the Nm subject samples.
Using the FNMF, we find a manageable number of SNP sets k, positive local and
linear combinations of the Nm subjects and the nm SNPs, which can be used to
distinguish the genetic profiles of the subtypes contained in the data set.
Mathematically, this corresponds to finding an approximate factoring, M ~ Wwu x
Hw, where both factors have only positive entries and hence are biologically
meaningful (12-14, 16). Ww is an nm X k matrix that defines the SNP set
decomposition model whose columns specify how much each of the subjects
contributes to each of the k SNP set. Hw is a k x Nm matrix whose entries

1 Thought disorder is the most ambiguous to classify. Some thought disorder
clearly belongs to positive symptoms (e.g., delusions of persecution or reference)
while some, such as thought withdrawal, echoing, or broadcasting (labeled as
“bizarre” in DSM), can appear in multiple SZ presentations, including negative
and disorganized SZ. Based on our clinical experience, we classified these
“bizarre” thought symptoms as observable in either positive or negative SZ,
although we found them to be more prevalent in negative and disorganized SZ.
In our opinion, these bizarre symptoms are most likely to reflect a disorder of
integrative thought processes in self-aware consciousness that results in a
blurring of the distinction between internal thoughts and external reality.
Consequently we allowed for the possibility that such bizarre phenomena can
observed in both positive and negative forms of SZ, even though we expected it
would be rare or absent in some paranoid subtypes.



represent the SNP allele values of the k SNP sets for each of the Nm subject
samples. In our implementation either a subject or SNP can belong to more than
one SNP set (10, 11, 16).

Rationale for the Use of Unconstrained Number of Clusters

Although there are many indices that estimate the appropriate number of
clusters for a given partition, we previously demonstrated that they are often
constrained by the type of cluster, and metrics utilized (11, 36). Therefore, it is
hard to obtain a consensus from all of them, and they very often provide
contradictory results. Moreover, given that the target of the method is to obtain
good relations among clusters from different domains of knowledge, it is not
known which cluster in one domain will match another cluster in a different
domain, and thus, the more varied the clusters, the better the chance of
identifying posterior inter-domain relations (11, 36, 37). To do so, we repeatedly
applied a basic clustering method in one domain of knowledge to generate
multiple clustering results using various numbers of clusters initializations (from
2 to Vn, where n is the number of observations/subjects).

Coincident Test Index: Co-clustering and Establishing Relations Between Sets

The degree of overlapping between two SNP or phenotypic sets was assessed
by calculating the pairwise probability of intersection among them based on the
Hypergeometric distribution (11, 27) (Pluyp, Figure S2):
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where p observations belong to a set F; of size h, and also belong to a set G, of

size n; and g is the total number of observations. Therefore, the lower the Plhyy,
the higher the overlapping (17). The (p-value of) hypergeometric “test” is used
here as a measure of association strength. The real test (p-value) of genotypic-
phenotypic relationship was provided through the permutation procedure.

Permutation Test for Genotypic-Phenotypic Relations

Statistical significance reported values were obtained by 4000 independent
permutations due to the comparisons between all possible generated SNP sets
(i.e., 4094, from 2 to v/n), and possible overlapped SNP sets here identified were
generated as following (16, 38): a) assign random subjects to a phenotypic cluster
of random size; b) assign random subjects to a genotype cluster (set) of random



size; c) calculate the Hypergeometric statistic (Pluyp, (27) eqn 2) between the two
clusters and accumulate the value. These values form an empirical null
distribution of Pl used to calculate the empirical p-value of an identified
relation. All optimal relations had empirical p-value < value < 4.7E-03.

Resampling Statistics of the NMF Sets

To guarantee the submatrices converge to the same solution and, given the
non-deterministic nature of NMF and its dependence on the initialization of the
W and H vectors, we run it 40 times for any k maximum number of allowed
submatrices with different random initializations of the vectors to select those
that that best approximates the input matrix (12). Besides, to estimate the
precision of sample statistics of the SNP sets (variance of the W and H vectors)
we use a leave-one-out technique (jackknifing) 1000 times on the SNP domain
and obtained a 94% support for all identified sets with an average variance of c.a.
+5% of their corresponding W and H vectors (29). Finally, we already modified
this sampling technique to ensure the occurrence of the remaining sets after a
leave-one-set-out (7) and applied to our current sample with >90% of support.

Data Reduction

Data reduction was not applied because many Principal Components (PCs)
were required in this study (data not shown), consistent with the demonstration
that clustering with the PCs instead of the original variables does not necessarily
improve, and often degrades, cluster quality and interpretability (39). Moreover,
likewise in phenomics (40), partially correlated variables reinforce the association
and clarify the symptom identification process. Therefore, we used initially 93
phenotypic features listed in Appendix I, catalog of phenotypic features.

Briefly, phenotypic features used in the search process included all available
data from the interviews. That is, replies to DIGS as well as to the Best Estimate
Diagnosis code sheet submitted by GAIN/NONGAIN to dbGaP. Unbiased
compilation of all of the data resulted in an initial set of 93 features. To capture
items specific for positive and negative schizophrenia and avoid symptoms with
affective elements, symptoms reported by acutely psychotic patients, and
redundant items the original set of was pruned based on authors clinical
experience, and computational feature validation (Table S6 and above in Method,
step 6.2.1).

Bioinformatics Analysis: Genotypic Organization of the SZ Architecture
Accounts for Multiple Genetic Sources of the Disease
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Given that genotypic SZ architecture is composed of multiple networks, we
matched each SNP set composing these networks with the corresponding
genomic location of their SNPs, and in turn, with the mapped genes (Figure 3A,
Table S1) to investigate what these SN sets represent in terms of genomic
information. We uncovered a list of genes with many different functions and
distinct roles in different molecular networks (Table S1-53).

A single SNP Set Can Map Different Classes of Genes, Located in Different
Chromosomes, and Distinct Types of Genetic Variants.

The uncovered SNP sets contain SNPs that map gene, promoter and intergenic
regions (IGRs) located anywhere in the genome, without being constrained by
genomic features such as a specific gene or haplotype (28). For example, SNP set
81_13 contains SNPs in chromosomes 8 and 16, whereas SNP set 42_37 has SNPs
located in chromosomes 2 and 11 (Figure 3A, Table S1). SNP set 75_67 has SNPs
in chromosomes 4, 8, 15, and 16, among others, and maps >30 genes, as expected
by its generality (Figure 3A, Table S1). The latter SNP set is in the same network
as SNP sets 56_30, 76_74 and 81_13, and thus shares some genes with them.
Despite being in the same network, the last three SNP sets map to particular
genes specific to each of them (Figure 3A, Table S1).

In addition to mapping genes in different locations, SNP variants within the
SNP sets affect distinct classes of genes including protein-coding, non-coding
(ncRNA) genes, and pseudogenes, with different molecular consequences
depending on the altered region (coding, UTRs, introns, Table S3). For example,
only 25% of SNPs in SNP set 75_67 affect protein-coding genes, which are the
targets most often considered in genetic studies of diseases, whereas another 25%
of SNPs affect ncRNAs (lincRNAs, antisense RNAs, miRNAs). One of these
lincRNAs is SOX2-OT, which is associated with > 15 possible transcripts (Table
S3); it is contained inside the SOX2 transcription factor that is predominantly
expressed in the human brain where SOX2-OT is also highly enriched (41, 42).

Likewise, SNPs from SNP set 22_11 are located within a large intergenic
region corresponding to two overlapping and newly characterized long ncRNAs
AC068490.2 and AC096570.2 (Table S3). Moreover, two SNP variants of SNP set
G19_2 affect miRNA AL354928.1 and small nuclear RNA U4, as well as protein-
coding GOLGAL1 gene (Figure S6A, Table S3). Finally, the SNP sets can map to
large genomic regions. That is the case with all SNPs in SNP set 22_11 (with risk
of 73 %), and a few in SNP set 81_13 (with risk of 95%), which correspond to two
different structural CNVs already annotated (www.ensembl.org). These results
point to accumulation of possible regulatory alterations of gene expression
pattern in these groups (Table S3), which suggests an underlying complex and
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dynamic architecture of molecular processes that influence vulnerability to
distinct forms of SZ.

Bioinformatics Analysis of the SNP Set-Related Genes Reveals Disparate
Molecular Consequences.

A detailed analysis of SNPs and mapped genes revealed at least three complex
scenarios affecting multiple genes in different fashions (activation, repression,
antisense modulation) and producing different molecular consequences (Table
S3). First, we determined that even a single SNP within a SNP set could produce
different consequences in affected transcripts (Table S3). For example, one SNP from
SNP set 81_13 was located in a protein-coding region of the SNTG1 gene, which
can produce either a change in an intron or in a transcript affecting nonsense-
mediated protein decay that would be eliminated by a surveillance pathway
containing a premature stop codon (Table S3). Second, we found that multiple
SNPs within a SNP set can affect multiple genes in different ways. This heterogeneity
is exemplified by SNPs from SNP set 19_2 intersecting with both ncRNAs and
the GOLGALI gene (Figure 4a). Third, we uncovered that multiple SNPs within
different SNP sets can distinctively affect single genes. For example, SNP sets 71_55
and 14_6 are located in different networks since they have neither SNPs nor
subjects in common (Figure 3 and Figure S5). Yet, all SNPs within both SNP sets
are located in the same NTRK3 gene, which influences hippocampal function,
but at different locations (Figure 6B), which thereby may modify risk for SZ
differentially (43). Consequently it is not surprising that each SNP set is observed
in different individuals with distinct phenotypic consequences. Overall, since a
single SNP can affect multiple gene transcripts, or multiple SNP sets may
influence a single gene transcript, we must consider the specific transcription
pathway in order to understand antecedent mechanisms that result in

equifinality and multifinality.

Genes Mapped by SNP Sets at Risk Correlate with Different Aspects of
Neurodevelopment.

Most genes mapped by the SNP sets are involved in neurodevelopment (Table
S2). For example, the SNP set 81_13 (Figure 3A) maps to SNTG1, PXDNL, and
GP2 genes (Table S1). SNTGI1 is a syntrophin that mediates dystrophin binding
in brain specifically. It is down-regulated in neurodevelopmental disorders,
sleep disorders, and dementia (Table S52). PXDNL encodes a peroxidasin-like
protein, which affects risk of SZ and dementia (Table S2). GP2 encodes
glycoprotein 2 (zymogen granule membrane) and is down-regulated in
neuropathy and basal ganglia disorders, but up-regulated in Alzheimer's disease
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(Table S2). Cumulatively, characterization of all genes in terms of related
diseases supports the biological impact of these SNP sets.

Pathways

We identified distinct pathways (see Tables S1 and S4, and Figure S7)
including genes that have already been reported as associated with SZ by
GWAS, as well as genes known to be abnormally expressed in the brain of SZ
patients. Overall, the products of genes uncovered by the SNP sets are included
in several well-known, relevant and interconnected signaling pathways.
Annotation information was manually curated and obtained from the Haploreg
DB (31) and from the Ensembl (www.ensembl.org) and NCBI
(www.ncbi.nlm.nih.gov) web services.

PI3K / Akt Signaling. Akt is a Serine/threonine Kinase, it is activated by tyrosine
kinase receptors, integrins, T and B cell receptors, cytokine receptors, G-proteins-
coupled receptors and other stimuli that involves the production of PIP3
triphosphate (phosphatidylinositol triphosphate) by PI3K (phosphoinositide 3
kinase).

PI3K can be activated by different ways:

*FOXR?2 (forkhead box R2) is a proto-oncogene when it is mutated, maintained
cell growth and proliferation through activation of RAS (GTPase) increase
aberrant signaling through pathways PI3K/AKT/mTOR and RAS/MAP/ERK,
inhibiting apoptosis (44-46).

*SOD3 ( superoxide dismutase 3) causes increased of phosphorylation of ERK /
Ras and PIP3 because PI3K, SOD3 may be Phosphorilated by Erk1/2 (47-49).
*Sema3A inhibits the proliferation and cell growth in neurons and prevents
axonal growth by inhibiting the PI3K/Akt via inhibition of Ras. Neuropilin and
SEMAT1 bound active apoptosis via PI3K/Akt (50-53).

*RAS (GTPase) can be activated by FOXR2 mutated by SOD3 and inhibited by
Sema3A. Ras and PI3K can activate mMTORC1 by cRaf/MEK/ERK (44, 49).
*SNX19 inhibits Akt phosphorylation resulting in apoptosis (54, 55).

*STYK1 oncogene that binds to Akt to activate the cascade signaling
downstream and leading to increased tumor cells and increasing the risk of
metastasis (56).

*CHSTO9 catalyzes the sulfates transfer to N -acetylgalactosamine residues,
inhibits Cd19/p85/PI3K-p110 complex (57, 58).

*RRAGSB is part of RAG proteins that interact with mTORC1 family and are
required for activation of amino acids via mTORC1(59).
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Signaling Pathways Activating MAPK/p38/p53. p38 MAPKs (o, B, v, and §) are
members of the MAPK family that are activated by a variety of environmental
stresses and inflammatory cytokines. As with other MAPK cascades, the
membrane-proximal component is a MAPKKK, typically a MEKK or a mixed
lineage kinase (MLK). The MAPKKK phosphorylates and activates MKK3/6, the
p38 MAPK kinases. MKK3/6 can also be activated directly by ASK1, which is
stimulated by apoptotic stimuli. p38 MAPK is involved in regulation of HSP27,
MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and several transcription factors
including ATEF-2, Statl, the Max/ Myc complex, MEF-2, Elk-1, and indirectly
CREB via activation of MSK1.

This pathway may be activated by activation of PI3K way Rac/MEK/ERK
*DUSP4 is a MKP able of inhibiting p38MAPK 12 and 14a, is regulated by TNF-a
expression. Decreases ERK 1/2 and reducing the cellular viability by alteration of
the NF-kB / MAPK pathways (60, 61).

*MAGEH]1 expression causes apoptosis of melanoma cells through the
interaction with the inner region to the membrane of the p75 neurotrophin
receptor (p75NTR) one TNF receptor type, and possibly also through
competition with the TNF receptor associated factor - 6 (TRAF6) and catalytic
neurotrophin receptor (TRK) for the same site of interaction with p75 (62-64).

Nucleus

*TRPS1 The gene encodes for an atypical member of the GATA family. It can
activate Snail 1 to produce inhibition of cadherines inside of nucleus (65, 66).
*ST18 is a promoter of hypermethylation, ST18 loss of expression in tumor cells
suggests that this epigenetic mechanism responsible for the specific down -
regulation of tumor (67, 68).

*SPATA7 may be involved in the preparation of chromatin in early meiotic
prophase in the nuclei for the initiation of meiotic recombination (69, 70).
*ZC3H14 a protein with zinc finger Cys3His evolutionarily conserved that
specifically binds to RNA and polyadenosine therefore postulated to modulate
post-transcriptional gene expression (71).

*U4, is part of snRNP small nucleolar ribonucleic particles (RNA —protein), each
one bind specifically to individual RNA . The function of the human U4 3'SL
micro RNA is unclear. It exists to enable the formation of nucleoplasm in Cajal
bodies (72).

*PPP1R1C (Protein phosphatase 1, regulatory subunit 1C) is a protein-coding
gene and inhibitor of PP1, and is itself regulated by phosphorylation. It
promotes cell growth and may protect against cell death, particularly when
induced by pathological stress (73, 74).
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*PRPF31 main function is thought to recruit and strap for U4/U6 U5 tri — snRNP
(75, 76).

*EVI5 works in G1/S phases, prevents phosphorylation of Emi 1 by Plkland
therefore inactive APC/C and accumulates cyclin A. In prometaphase, Plk1
phosphorylates to EVI5, producing its inactivation and subsequent activation of
APC/C and downstream signaling pathways to complete the mitotic cycle (77-
79).

*SNORA42: The main functions of snoRNAs has long been thought to modify,
mature and stabilize rRNAs . These posttranslational modifications -
transcriptional are important for production of accurate and efficient ribosome.
Moreover, some snoRNAs are processed to produce small RNAs (80, 81).
*SNORD112. SnoRNAs act as small nucleolar ribonucleoproteins (snoRNPs),
each of which consists of a C / D box or box H/ ACA RNA guide, and four C/D
and H / ACA snoRNP associated proteins. In both cases, snoRNAs specifically
hybridize to the complementary sequence in the RNA, and protein complexes
associated then perform the appropriate modification to the nucleotide that is
identified by the snoRNAs (80, 81).

*SMARCADI1 contributes as part of a large complex with HDAC1, HDAC2, and
KAP1 GYA to integrate with nucleosome spacing and histone deacetylation.
H3K9 methylation is required for heterochromatin restore apparently facilitates
histone deacetylation and H3K9me3 . How chromatin remodeling is done by
deacetylation is unknown, but it seems to coordinate spacing between
nucleosomes with H3K9 acetylation and monomethylation (82).

Mitochondria

*SLC25A14 uncoupling protein that facilitates the transfer of anions from the
inside of the mitochondria to the outer mitochondrial membrane and the return
transfer of protons from the outside to the inner mitochondrial membrane.
SLC25A14 functional role in cellular energy supply and the production of
superoxide after it overexpressed in neuronal cells. In untreated culture
conditions, overexpression of MMP and SLC25A14 significantly decreased
content of intracellular ATP (83-85).

¢ TMEM135, some studies have demonstrated TMEM135 association with
mitochondrial’s fat metabolism, and a possible role for TMEM135 recently
identified in improving fat storage (86).

*VDACS selective Anions voltage-dependent channels (VDACs) are proteins
that form pores allowing permeability of the mitochondrial outer membrane. A
growing body of evidence indicates that VDAC plays a major role in metabolite
flow in and out of mitochondria, resulting in regulation of mitochondrial
functions (87).
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Membrane

*SLC20A2 the proteins of this group transport stream comprises an initial
joining of a Na + ion, followed by a random interaction between Pi (inorganic
phosphorus) monovalent and second ion Na + . Reorientation loaded carrier,
then leads to the release substrate in the cytosol (88-90).

*NALCN encoding a voltage-independent, cationic, non-selective, non-
inactivating, permeable to sodium, potassium and calcium channel when
expressed exogenously in HEK293 cells. Sodium is important for neuronal
excitability in vivo, the NALCN channel seems to be the main source of sodium
leak in hippocampal neurons and because these two processes are strongly
altered in schizophrenia is the hypothesis had to

NALCN could show a genetic association with schizophrenia (91).

*HACE] is a tumor suppressor, catalyses poly - Racl ubiquitylation at lysine 147
upon activation by HGF, resulting in its proteasomal degradation. HACE1
controls NADPH oxidase. HACE1 promotes increased binding to Racl
regulating the NADPH oxidase, decrease the production of oxygen free radicals,
and inhibit the expression of cyclin D1 and decrease susceptibility to damage
DNA. HACEI1 loss leads to overactive NADPH oxidase, increased ROS
generation, also the expression of cyclin D1 and DNA damage induced by ROS
(92-95).

*NCAMLI is a constitutive molecule expressed on the surface of various cells,
promotes neurite outgrowth, nerve branching, fasciculation and cell migration
(96, 97).

*OPNb5 apparent gabaergic interaction in Synaptic space (98, 99).

*NETO?2 is an auxiliary subunit determines the functional propiedadde KARS
proteins (kainate, a subfamily of ionotropic glutamate receptors —iGluRs-) that
mediate excitatory synaptic transmission, regulate the release of
neurotransmitters and in selective distribution in brain (100, 101).

*VANGL1 This gene encodes a member of the family tretraspanin. Mutations in
this gene are associated with neural tube defects . Alternative splicing results in
multiple transcript variants (102, 103).

*DKK4 is a DKK to block the expression of LRP and thus union with the
complex Frizzled and Wnt / SFRP / WIF blocking the release of b —catenin (104).
*NTRK3 is a member of the family of neurotrophin receptors and is critical for
the development of the nervous system. Published studies suggested that
NTRKS3 is a dependence receptor , which signals both the ligand -bound state
("on") and the free ligand ("oft") state (see chart) . When present the ligand
neurotrophin -3 ( NT-3 ), NTRK3 trigger signals within the cell via a tyrosine
kinase domain in promoting cell proliferation and survival. In the absence of NT-
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3, NTRKS signals for cell death by triggering apoptosis. Therefore, NTRK3 have
the potential to be an oncogene or tumor suppressor gene function of the
presence of NT-3 (43, 105-108).

Reticular Endoplasmic Reticulum

*PSMC1 is involved in the destruction of the protein in bulk at a fast or slow rate
in a wide variety of biological processes such as cell cycle progression, apoptosis,
regulation of metabolism, signal transduction, and antigen processing (109).
*PTBP2 Ptbp1 and Ptbp2 regulate the alternative splicing of various RNA target
assemblies, suggesting that the roles of Ptbpl / 2 proteins are different in
different cellular contexts. Ptbp2 functions in the brain are not clear (110, 111).
*RyR3s is a type of ion channel that intracellular free Ca2 + when opened from
the endoplasmic reticulum (ER). It is very similar to the inositol triphosphate
receptor (inositol - 1, 4,5- triphosphate) IP3R. The main signal to trigger the
opening of RyRs are Ca2 + has usually entered through voltage-dependent
channels of cell membrane. RyR3 is expressed in several cell types including the
brain in small quantities, RyR3 deficient mice have impaired hippocampal
synaptic plasticity and impaired learning. ATP also stimulates the activity of the
channels RyR3. The therapeutic targets focus on molecules that induce release
control, internalization and calcium mobilization (112, 113).

*RPL35 is a protein binding to the signal recognition particle (SPR) and its
receptor (SR). They mediate targeting complexes nascent chain - ribosome to the
endoplasmic reticulum (114).

*RPL5 is an MDM2 binding protein (MDM2 oncogene, protein E3 ubiquitin
ligase) and SRSF1 (serine / rich splicing factor arginine 1) to stabilize p53
oncogene and to induce cell senescence. RPL can join RPL11 and other ribosomal
proteins to silence Hdm?2 and p53 (114, 115).

*FAMG69A calico dependent kinase, extracellular and intracellular, localized in
the endoplasmic reticulum (78, 116)

Other Organelles

*GOLGAL1 is part transport proteins of the Golgi apparatus, which participates
in glycosylation and transport of proteins and lipids in the secretory pathway
(117, 118).

eEMLS5 blocks EMAP via MAP or stabilization of microtubules (74).

* ARPC5L component can function as Arp2 / 3 complex which is involved in the
regulation of actin polymerization and together with the activation of factor
inducing nucleation (NPF) mediates the formation of branched networks of actin.
It belongs to the family Arpc5 (119).
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*CSMDL1 in the TGF-B pathway, CSMD1 permits the TGE-B receptor I junction,
allowing it to phosphorylate Smad3 and thus allow complex formation:
phosphorylated Smad3 / phosphorylated Smad2 / Smad4; the complex is
internalized into the cellular nucleus and bound to a transforming factor leads to
apoptosis. In addition, the TGF-B receptor II binds the phosphorylated complex,
allowing for subsequent binding Smad1/5/8 with Smad4, and nuclear

internalizing inducing apoptosis mediated by binding to a transforming factor
(111, 120).

Replicability

Replicability of the Phenotypic Features: Psychiatric Assessment in
International Schizophrenia Consortium (ISC), and the Psychiatric Genetics
consortium for schizophrenia (PGC-SCZ)

Unfortunately, there are no large studies except MGS that used DIGS for the
assessment of SZ and the other large study (ISC) used a wide variety of
instruments. There has been little attention to the need for consistency in
obtaining a detailed and rich phenotypic description of SZ, with meta-analysis
based on reducing assessment to the dichotomy of SZ or not based on DSM or
ICD diagnoses (1, 24, 121-124). The supplementary material in (122) is the main
description of the ISC assessment data. The ISC is composed of the following
samples using different diagnostic procedures: Aberdeen (723 cases, clinical
interview is SCID, diagnosis by OPCRIT, which is a checklist completed by
clinician), Cardiff (cases from Bulgaria diagnosed by “about 50” psychiatrists in 5
different hospitals using a translation of SCAN - schedule for clinical assessment
in neuropsychiatry for diagnosis of SZ by DSM-1V), Dublin (no structured
interview, diagnosis by Operational Criteria Checklist OPCRIT by clinicians,
using DSM-1V criteria), Edinburgh (assessed by SADS-L supplemented by case
notes and collateral information, diagnosis based on DSM-1V criteria), London
(diagnosis by ICD10 diagnosis of schizophrenia in medical case history and
confirmed by SADS-L diagnosis, diagnosed as at least “probably for
schizophrenia based on Research Diagnostic Criteria RDC), Portuguese Islands
Collection (used DIGS, SANS, and SAPS, and OPCRIT), Sweden (diagnoses were
made by treating clinician based on diagnoses of ICD 8,9, or 10, with a DSM-IV
checklist review of medical record in a small subsample of 111 to confirm that
95% of cases could be confirmed to meet DSM-IV criteria. In summary, the ISC
phenotypic analysis were based on the diagnosis of SZ according to a variety of
criteria (ICD 8, 9, or 10; DSM-IV, and RDC) by a variety of structured interviews
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(DIGS, SCAN, SADS-L, and RDC) filtered through a variety of checklists (DSM-
IV, OPCRIT) or no structured interview at all (based on medical charts by
attending psychiatrists) to produce a dichotomous phenotype (SZ or not) for
meta-analysis, as detailed in the supplementary material attached to (122).

The PSC-SCZ attempted to evaluate the quality of the phenotypic data that it
collected by pooling ISC, MGS, and some other studies (CATIE, Cardiff, 5
SGENE sites and Zucker Hillside hospital) that used variable assessment and
diagnostic methods. This is described in the supplementary material (part A.
Recruitment and assessment of subjects) of (123). Possible contributors were
rated according to an 18-item questionnaire covering the assessment protocol
and quality control procedures. Nine of these 18 items were agreed by
consensus as key for acceptance into the study: the use of any structured
interview, systematic training of interviewers in use of the instrument,
systematic quality control of diagnostic accuracy, reliability trials, review of
medical record information, best estimate procedure employed, specific inclusion
and exclusion criteria developed and utilized, MDs or PhDs as making the final
diagnostic determination, and special additional training for the final
diagnostics. Each study was scored on this 9-point scale. Most but not all
satisfied 7 of the 9 criteria and were judged of high quality, 3 others were
accepted anyway, and 1 was excluded due to inadequate quality control of the
diagnostic process.

Replicability of Results: The Clinical Antipsychotic Trials of Intervention
Effectiveness (CATIE) and the Portuguese Islands samples (PIS) from the PGC-
SCZ

The CATIE sample was collected as part of the Clinical Antipsychotic Trials
of Intervention Effectiveness project, and ascertainment was previously
described (24, 125-128). The cases are comprised of 738 (544 males and 194
females) of the 1,460 CATIE participants, who donated a DNA sample from
multiple sites in the United States of America (US) of which 402 and 336 had
European and African ancestries, respectively. The control sample used for the
CATIE GWAS was collected by MGS (123). In the CATIE GWAS, the utilized
MGS controls totaled 733 (493 males and 240 females) including European and
African ancestries. The array platform was Affymetrix 500K and Perlegen 164K.
We considered 44 phenotypic variables from the CATIE study (Table 510), which
used variable assessment and diagnostic methods including the Positive and
Negative Syndrome Scale, the Quality of Life Questionnaire, and the Structured
Clinical Interview for DSM-1V (24, 123, 125-127).

The cases in the PIS lived in Portugal, the Azorean and Madeiran islands, or
were the direct (first or second generation) Portuguese immigrant population in
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the US (24, 128, 129). 346 cases (213 males and 133 females) were used in this
human subjects protocol approved by State University of New York — Uptown
Medical Center, Syracuse, New York. The controls were not related to cases, with
the exception of 3 controls that married into families but were not biologically
related to cases. The control sample used in this analysis was comprised of 215
controls (80 males and 135 females). Like the cases, they also lived in Portugal,
the Azorean and Madeiran islands, or were the direct (first or second generation)
Portuguese immigrant population in the USA. The array platform was
Affymetrix 5.0. Likewise the MGS samples, the Portuguese sample used DIGS for
the assessment of SZ (128, 129). Here, we utilized 35 of these features (Table S10).
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Supplemental Figure Legends

FIGURE S1. Methodology Workflow of the Divide & Conquer Strategy.
Processes involving SNP and phenotypic sets are indicated in blue and red,
respectively, whereas procedures concerning phenotypic-genotypic relations are
shown in violet. The web server application PGMRA for identifying genotype-
phenotype relations is publically available at http://phop.ugr.es/fenogeno (16).
Statistical analysis was performed by the SNP-set Kernel Association Test
(SKAT) (22, 28), which is also accessible via the web server cited above.

FIGURE S2. The Hypergeometric Statistics (see eqn. 2). (A) Relations are
evaluated by the probability of intersection (PI) measures the degree of
overlapping between two sets/clusters, assigning the lowest p-value to the higher
overlapping (red: low; green: high). Illustration of the relations based on two
dimensions, where the x-y axes correspond to SNP sets (Gi) and phenotypic sets
(Pj), respectively. The similarity of intersection (SI) measures the explanatory
quality of a set and it is represented by the size of the circles (big: high; small:
low). (B) Sagittal diagram illustrating the intersection operation used to build
relations and the corresponding evaluation as is reported in (A). Colors
correspond to the PI and line widths to the SI.
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FIGURE S3. SNP Sets Represented as Submatrices Composed of SNPs (y-axis)
Shared by Distinct Subsets of Subjects (x-axis). Allele values are indicated as
AA (light blue), AB (intermediate blue), BB (dark blue), and missing (black).

SNP and subject names/codes are not shown. Subject status was superimposed
after SNP set identification: cases (red) and controls (green). SNP sets are labeled
by a pair of numbers representing the maximum number of sub-matrices and the
order in which they were selected by the method, as described in Figure 2. Row
and column dendograms were superimposed a posteriori into each sub-matrix for
visualization purposes.

FIGURE S4. The Distribution of Risk for the Uncovered SNP Sets. Histogram
representing the distribution of SNP sets as measured by their density (y-axis,
frequency of SNP sets divided by the length of the interval) at different risk
values (x-axis). The histogram distribution can be approximated by a normal

distribution, where SNP sets at >70% of risk were selected for our analysis, with
only 42 non-redundant SNP sets (Table 1).

FIGURE S5. Genotypic Dissection and Identification of the SZ Architecture.
Nodes indicate SNP sets linked by shared SNPs (blue line) and/or subjects (red
line) without any pre-assumption about the subject status (i.e., case or control).

FIGURE Sé6. Bioinformatics Analysis of SNPs Derived from SNP Sets
Targeting Genomic Regions® (A) Multiple SNPs within a SNP set can affect a
single gene in many ways. 5 SNPs from the SNP set 19_2 (100% of risk) can
affect GOLGA1: SNPs rs10986471 and rs640052 may produce downstream
variations; SNP rs634710 can generate missense variations; SNP rs7031479 may
introduce intron variants; and SNP rs687434 may create non-coding exon
variants (www.ensembl.org, Tables S1 and S3). Two SNP variants of the SNP set
19_2 affect the regulatory region of ncRNAs genes: miRNA AL354928.1 and
small nuclear RNA (U4 snRNA) (Table S1). The rs640052 SNP lies between
regulatory regions downstream and upstream of U4 and the GOLGAL1 gene,

2 The protein coding genes include the 5" and 3" untranslated region (3" UTR,
5"UTR), exons that code for the coding sequence (CDS) and introns. The ncRNA
genes are defined only in terms of exons and introns. The promoter upstream
and downstream region for both types of genes have been defined as the
segment of 5000bp before the beginning of the 5 UTR, and 5000bp after the
3’UTR end. The remaining space between the upstream and downstream region
of a gene is here defined as the intergenic region.
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which may be functionally related. The U4 snRNAs conform the splicesome,
which is involved in the splicing process that generates diverse mRNA species
from a single pre-mRNA. Consistently, the GOLGA1 gene has substantial
variation in alternative splice isoform expression and alternative polyadenylation
in cerebellar cortex between normal individuals and SZ patients (117, 130). (B)
All SNPs from SNP set 71_55 are located in the intergenic region upstream of the
NTRKS3 gene, in a location of a predicted enhancer (Table 51). Nevertheless,
those SNPs of the 14_6 SNP set are located within NTRKS3, principally in intronic
regions and within the upstream region of pseudogene RP11-356B18.1 (Table S1).
The latter pseudogene is harbored in an intron of NTRK3 that is processed in the
NTRK-005 transcript variant, which does not code neurotrophin receptor-3
protein. This suggests that a mutation in the first SNP set may inhibit the
transcription of the corresponding gene, whereas mutations in the second SNP
set may block or decrease production of the corresponding protein (Table S3).

FIGURE S7. Pathway Analysis. Distinct pathways identified by the SNP sets
are well known, relevant and interconnected signaling pathways for neural
development, neurotrophin function, neurotransmission, and neurodegenerative
disorders (see Tables S1 and S4). Other genes uncovered are also
overwhelmingly expressed in the brain, and participate in regulation of
intracellular signaling, oxidative stress, apoptosis, neuroimmune regulation,
protein synthesis, and epigenetic gene expression.
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