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Supplementary Methods 

Sample construction and exclusionary criteria 

 Subjects were excluded if they had a history of substance abuse or dependence 

in the past six months or a positive urine drug screen on the day of the study. Subjects 

were also excluded if they had absent or invariant responses to BAS questionnaire 

items (n=5), if resting state data was not acquired (n=1), if clinical data was distant from 

the day of scan (>12 days, n=2), if they lacked adequate functional image coverage 

(n=1), or if elevated in-scanner motion during the functional image acquisition was 

present (defined as mean relative displacement exceeding 0.3 mm, n=10) (1).  

The final sample included 32 subjects with a current episode of major 

depression, 50 subjects with bipolar disorder [75% depressed, 10% hypomanic/manic, 

7.5% euthymic, 7.5% mixed], 51 subjects with a psychotic disorder [92% schizophrenia, 

6% schizoaffective disorder-depressed type, 2% schizophreniform], 39 subjects with 

psychosis risk [52% first-degree family members, 48% clinical high risk] and 53 healthy 

comparators. Clinical high risk status was determined as in our previous studies (2), i.e., 

a Scale of Prodromal Symptoms rating of 3 or higher on >=1 positive symptom or >=2 

negative/disorganized symptoms occurring within the past 6 months. 

 

BIS/BAS Factor Analysis  

As prior work documents relevant heterogeneity within the BIS-BAS scale 

including a BAS Reward subdomain, we conducted an exploratory factor analysis (EFA) 

of the item-level BIS/BAS data. The rationale for running the EFA was to determine 

whether the previously generated BIS-BAS factors from a sample of healthy, college-
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aged adults could be replicated in a population with diverse psychopathology. The 

analysis was conducted using the irt.fa() function in the psych package (3) in R (4). 

Because the items were treated as ordinal rather than continuous, the correlation matrix 

input to the EFA comprised polychoric correlations. The (default) least squares 

extraction method with oblimin rotation was used. The optimal number of factors to 

extract was determined by parallel analysis, which compares the scree plot of 

eigenvalues to the eigenvalues of randomly generated data of the same dimensions (5). 

The two-, three- and four-factor solutions were also examined for interpretability. Both 

parallel analysis and interpretability supported the four-factor solution, which composed 

previously identified BIS-BAS subdomains including: 1) BIS, 2) BAS Drive, 3) BAS Fun 

and 4) BAS Reward (see Table S2).  

 

Assessments with Disorder-Specific Disease Severity Measures 

In order to investigate how our findings might relate to disorder-specific disease 

severity measures; we administered the Beck Depression Inventory (BDI) (6) and the 

Clinical Assessment Interview for Negative Symptoms (CAINS) (7). These scales were 

chosen as they have previously been utilized to measure disease severity in depression 

and schizophrenia respectively. In addition, in order to investigate non-specific effects 

such as scanning-related anxiety; we administered the state subscale of the State-Trait 

Anxiety Index (STAI-S) (8).  
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Image Acquisition  

 All data were acquired on the same scanner (Siemens Tim Trio 3 Tesla, 

Erlangen, Germany; 32 channel head coil) using the same imaging sequences. Resting-

state blood oxygen level dependent (BOLD) fMRI was acquired using a whole-brain, 

single-shot, multi-slice, gradient-echo (GE) echoplanar (EPI) sequence with the 

following parameters: 124 volumes, TR 3000 ms, TE 30 ms, flip angle 85°, FOV 

192x192mm, matrix 72X72, slice thickness/gap 3mm/0mm, effective voxel resolution 

3.0x3.0x3.0mm. Prior to functional time-series acquisition, a magnetization-prepared, 

rapid acquisition gradient-echo (MPRAGE) T1-weighted image was acquired to aid 

spatial normalization to standard atlas space, using the following parameters: TR 1810 

ms, TE 3.51 ms, FOV 1192x256mm, matrix 256x192, 160 slices, TI 1100 ms, flip angle 

9 degrees, effective voxel resolution of 0.9x0.9x1mm. Additionally, a B0 field map was 

acquired for application of distortion correction procedures, using a double-echo 

gradient recall echo (GRE) sequence: TR 1000 ms, TE1 2.69 ms, TE2 5.27 ms, 44 

slices, slice thickness 4mm, FOV=240mm, flip angle 60 degrees, effective voxel 

resolution of 3.8x3.8x4mm.  

 In order to further minimize motion, subjects were stabilized with the head coil 

using one foam pad over each ear and a third over the top of the head. During the 

resting-state scan, a fixation cross was displayed as images were acquired. Participants 

were instructed to stay awake, keep their eyes open, fixate on the displayed crosshair, 

and remain still.  
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Subject-level time series processing 

 Time series data was processed using a validated confound regression 

procedure that has been optimized to reduce the influence of subject motion (9). The 

first 4 volumes of the resting functional time series were removed to allow signal 

stabilization, leaving 120 volumes for subsequent analysis. The time series were 

distortion-corrected, slice-time corrected, skull-stripped, realigned, and spatially 

smoothed at 6mm FWHM. Functional time series were band-pass filtered to retain 

frequencies between 0.01-0.08 Hz. Functional images were re-aligned using MCFLIRT 

(10). Mean white matter (WM) and cerebrospinal fluid (CSF) signals were extracted 

from the filtered time series data using tissue segments generated for each subject. 

Prior to confound regression, all motion parameters and confound time courses were 

band-pass filtered in an identical fashion as the time series data itself in order to prevent 

frequency mismatching and allow the confound parameters to best fit the retained signal 

frequencies (11). Improved confound regression included 9 standard confound signals 

(6 motions parameters + global/ WM/ CSF) as well as the temporal derivative, quadratic 

term, and the temporal derivative of the quadratic (36 parameters total).  

  

Image registration 

 The T1 image was skull stripped using FSL BET (12), bias corrected using 

multiplicative intrinsic component optimization (13) and registered to the Montreal 

Neurological Institute (MNI) template using a highly accurate deformable registration 

with attribute matching and mutual salience weighting (14). Processed subject-level 

BOLD images were co-registered to the T1 image using boundary-based registration 
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(15) with integrated distortion correction as implemented in FSL 5. All registrations were 

inspected manually and also evaluated for accuracy using spatial correlations. As in 

Shehzad et al., (2014), for computational feasibility, standard-space voxelwise time 

series data were down-sampled to 4mm isotropic voxels prior to CWAS.  

 

Connectome-Wide Association Study (CWAS) using MDMR  

In the first step, the processed, standard-space 4mm voxelwise subject time 

series data were used to conduct a seed-based connectivity analysis at each gray 

matter voxel. This is defined as the temporal Pearson’s correlation between each 

voxel’s BOLD time series with that of every other voxel within gray matter (defined by 

the MNI mask). This analysis produced a correlation matrix of all pairs of gray matter 

voxels (14,735 voxels x 14,735 voxels) for each subject.  

In the second step, the overall multivariate pattern of connectivity for each voxel, 

represented by the correlation matrix in step 1, was compared between the subjects 

using a distance metric. The distance metric, which is a function of Pearson’s 

correlation, quantifies the similarity in the pattern of connectivity between each pair of 

subjects. This produced a matrix of distances (225 x 225) representing all subject-pairs 

for each voxel. This group-level distance matrix was generated for each of the 14,735 

gray matter voxels.  

Finally, in the third step, MDMR was used to test how well each phenotypic 

variable explained the distances between each subject’s pattern of seeded connectivity 

created in step 2. This provided a measure of how the overall pattern of connectivity 

with that seed voxel was impacted by each group level variable entered into the design 
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matrix in standard regression format. Our group-level design matrix included the 

dimensional variable of interest (BAS Reward) as well as covariates including clinical 

group status (i.e. MDD, BPD, SCZ, PR, NC), age, sex, and in-scanner motion. Motion 

was summarized for each subject as the mean relative displacement of realignment 

parameters across the time series.  

The MDMR procedure yielded a voxelwise pseudo-F statistic map, with 

permutation-based significance testing using 5,000 permutations. The result of this 

procedure identified voxels where BAS Reward affected the overall pattern of 

connectivity. As in Shehzad et al., MDMR type I error was controlled using cluster-

correction with a voxel height of z>1.64. Cluster probability was corrected at a p-value 

threshold of 0.01 using 10,000 Monte-Carlo simulations. Cortical projections were 

displayed using Caret.  

 

Follow up seed-based analyses 

 Seeds were defined for each cluster returned by MDMR. Specifically, data were 

extracted from 5mm-radius spheres at the center of gravity of each cluster. A seed map 

was created for each subject by calculating the Pearson’s correlation between the time 

series of each seed and every other voxel in the brain. Seed maps were Fisher z-

transformed to improve normality. The maps were evaluated with a group-level 

regression to determine the association between reward responsiveness (BAS Reward) 

and seed-based connectivity. Group status, age, sex and motion were included as 

covariates in all analyses. For follow-up seed analyses, clusters were considered 

significant using the same voxelwise cluster-corrected threshold as for MDMR (Z > 1.64, 
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P < 0.01). However, it should be emphasized that the follow-up seed-based analysis 

subsequent to MDMR does not constitute a unique hypothesis test, as the seeds were 

identified based on the significance of the MDMR result. Rather, this follow-up seed 

analysis is a necessary post-hoc test needed to understand the MDMR result.  

 

Network construction and analyses 

Follow-up seed based analyses delineated a consistent pattern of altered 

connectivity among brain regions identified by MDMR. In order to concisely summarize 

interactions among these regions, we evaluated connections between these regions 

within a network framework. We constructed a graph of 8 nodes consisting of clusters 

identified by MDMR. To ensure that differences in cluster size did not influence results, 

average time series were extracted from 5mm-radius spheres at the center of gravity 

(COG) of each cluster. Spheres that were at brain boundaries were not used; instead 

we chose the nearest coordinates that resulted in all voxels within the sphere being 

placed within gray matter. Pair-wise Pearson’s correlations among all nodes were 

calculated for each subject, and z-transformed prior to conducting analyses. This 

produced a reduced network (size 8 x 8 for each subject) among regions identified by 

MDMR where connectivity was dimensionally altered in association with BAS Reward.  

In order to summarize this network, we next assigned each cortical MDMR node 

to a network module using community detection techniques. The subcortical NAc node 

was excluded to delineate cortical modules. This was done in three steps: first, the 

Louvain modularity detection algorithm (16) was run for each subject (50 iterations). 

Second, a subject-level consensus procedure (500 iterations) produced a community 
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assignment for each of the cortical nodes for each subject. Third, group level community 

structure was determined through a consensus-clustering procedure (5000 iterations) 

(17). This yielded two cortical modules, which corresponded to elements of the DMN 

and CON. The Yeo et al. (18) seven-network parcellation was used to assess spatial 

correspondence of MDMR clusters to known large-scale functional networks.  We 

confirmed network communities by comparing the cortical modules with a null model of 

permuted networks (1000 iterations) where the consensus partition labels were 

randomized for each node while keeping the underlying edge weights intact (DMN: 

P=1.95 x 10-4; CON: P=2.39x10-4). Network structure was visualized using a force-

directed Kamada-Kawai layout in Gephi (19). 

 We next examined BAS Reward effects on connectivity measures among the 

cortical modules and with the NAc using measures of within-network and between-

network connectivity (20). Within-network connectivity is defined as the mean strength 

of all edges within a network community. In contrast, between-network connectivity is 

defined on a pairwise basis as the mean strength of edges between nodes in a 

community and those outside the community. The relationship of BAS Reward to these 

connectivity measures was examined using linear regression with group status, age, 

sex, and motion used as covariates.  
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Supplementary Results 

Specificity of MDMR Findings  

 Although this study focused on transdiagnostic phenotypes, we conducted a fully 

exploratory MDMR analysis evaluating group effects. This analysis revealed significant 

MDMR clusters for the effect of clinical diagnosis (Table S4), which were distinct from 

the findings related to BAS Reward. Specifically, in contrast to the analysis of BAS 

Reward, this categorical analysis of diagnostic group did not identify hubs of the reward 

system such as the nucleus accumbens.  

 

Specificity of Network Findings  

To determine how BAS Reward relates to measures of illness severity, we 

looked at its relationship with the BDI and the CAINS, illness severity measures 

normally applied within single disorders (depression and schizophrenia respectively). In 

our sample, the association of BAS Reward with both BDI severity (r = -0.24) and the 

Clinical Assessment Interview for Negative Symptoms (CAINS) (r= -0.28) suggested a 

modest relationship to measures of illness severity.  

The BDI and CAINS were not significantly related to the network-level summary 

measures associated with BAS Reward  (Table S9). This demonstrates that while BAS 

Reward is related as expected to measures of illness severity, the results we observed 

were not explained by severity of depression or negative symptoms domains, and were 

better captured by the more psychologically-specific and transdiagnostic measure of 

reward sensitivity.     
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To further assess for specificity, we also re-evaluated our results using two 

additional constructs, the fatigue item from the Beck Depression Inventory (BDIfatigue) 

and the State Anxiety score from the State-Trait Anxiety Index (STAI). We examined 

these measures, as they are likely to provide concise summary measures of two 

potentially non-specific effects: fatigue and scanning-related anxiety. In our sample, 

these measures are only modestly correlated with BAS Reward (BDIfatigue: r = -0.15; 

STAI: r = -0.27). Furthermore, neither of these measures were found to significantly 

associate with the network-level associations (Table S9). 

 
 
 
 
 
Supplementary Tables 

 
 
TABLE S1. Number of subjects taking each medication class, by clinical group 

 
Class MDD 

 
BPD 

 
SCZ 

 
PR 

Antidepressants 19 13 22 2 

Benzodiazepines 6 11 12 2 

Antipsychotics 0 24 44 0 

Stimulants 1 6 5 4 

Mood Stabilizers 3 34 4 0 

 
 



 12 

TABLE S2. BIS/BAS Factor Analysis: Four Factor Solution 

 

Item Content F1 F2 F3 F4 

13 
I feel pretty worried or upset when I think 
or know somebody is angry at me 0.78       

8 Criticism or scolding hurts me quite a bit 0.70       

24 I worry about making mistakes 0.70       

16 
If I think something unpleasant is going to
happen I usually get pretty "worked up" 0.67       

19 
I feel worried when I think I have done po
orly at something important 0.64       

2 

Even if something bad is about to happen
to me, I rarely experience fear or nervous
ness -0.56       

22 
I have very few fears compared to my  
friends -0.49       

9 

When I want something I usually go  

all‐out to get it   0.78     

3 I go out of my way to get things I want   0.75     

21 
When I go after something I use a  
"no holds barred" approach   0.53     

12 
If I see a chance to get something I want  
I move on it right away   0.52     

4 
When I'm doing well at something I love  
to keep at it   0.46   0.45 

20 I crave excitement and new sensations     0.80   

15 I often act on the spur of the moment     0.65   

10 
I will often do things for no other reason  
than that they might be fun     0.40   

23 It would excite me to win a contest       0.63 

7 
When I get something I want, I feel  
excited and energized       0.51 

14 
When I see an opportunity for something  
I like I get excited right away       0.47 

5 
I'm always willing to try something new if  
I think it will be fun     0.30 0.38 

18 
When good things happen to me, it  
affects me strongly       0.32 

 
Factor analysis of BIS/BAS generates four factors (F1-F4) corresponding to previously 
identified BIS-BAS subdomains. Original BIS/BAS items superimposed for BIS (purple), 
BAS Drive (yellow), BAS Fun (blue) and BAS Reward (green).  
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TABLE S3. MDMR Clusters (BAS Reward) 
 

Region MNI Coordinates 
(COG) 

Cluster Size 
(4mm voxels) 

Right Inferior Temporal Cortex  58, -18, -24 95 

Right Temporoparietal Junction 54, -50, 40 87 

Dorsomedial Frontal -6, -10, 52 79 

Left Superior Temporal Cortex -58, -22, 0 77 

Nucleus Accumbens 10, 10, -4 76 

Right Insular Cortex 42, 10, 0 67 

Left Temporoparietal Junction -42, -66, 36 58 

Left Orbitofrontal Cortex -46, 30, -4 36 

 
 
 
 
 
 
 
TABLE S4. MDMR Clusters (Clinical Diagnosis) 
 

Region MNI Coordinates 
(COG) 

Cluster Size 
(4mm voxels) 

Right Central Opercular Cortex/ 
Right Superior Temporal Cortex 

46, -6, 8 748 

Dorsomedial Frontal -2, -6, 52 650 

Left Central Opercular Cortex/ 
Left Insular Cortex 

-42, -10, 8 421 

Left Frontal Pole -26, 42, 24 220 

Thalamus -2, -14, 4 189 

Cuneal Cortex 10, -70, 36 172 

Right Frontal Pole 26, 30, 44 122 

Left Lingual Gyrus -18, -70, -8 86 

Left Temporoparietal Junction -42, -50, 48 58 
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TABLE S5. BAS Reward Partial Correlations by Group 
 

Group  Within 
DMN 

Between 
DMN and 

CON 

Between 
NAc and 

DMN 

Between 
NAc and 

CON 

Full sample -0.25 0.32 0.13 -0.14 

Psychopathology-only 
sample (exclusion of 
controls) 

-0.30 0.37 0.19 -0.16 

MDD -0.34 0.35 0.20 -0.10 

BPD (depressed) -0.42 0.39 0.50 -0.19 

BPD (non-depressed) -0.12 0.36 0.35 -0.41 

SCZ  -0.22 0.31 0.10 -0.18 

PR (clinical risk) -0.57 0.53 0.15 -0.27 

PR (family members) -0.40 0.71 0.20 -0.43 

NC -0.04 0.18 -0.18 -0.09 

 
 
 
 
 
TABLE S6. Between Group Comparisons  
 

Measure ANOVA Comparison 

BAS Reward p<0.05 NC - MDD (t=2.9, p<0.01) 
PR - MDD (t=2.4, p<0.05) 

BAS Drive p<0.05 NC - MDD (t=3.9, p<0.001) 
NC - BPD (t=2.5, p<0.05) 
PR - MDD (t=2.4, p<0.05) 
SCZ - MDD (t=2.3, p<0.05) 

BAS Fun p<0.05 NC - MDD (t=2.7, p<0.01) 
PR - MDD (t=2.3, p<0.05) 

BIS  p<0.05 BPD - NC (t=5.5, p<0.0001) 
MDD - NC (t=5.3, p<0.0001) 
MDD - PR (t=3.3, p<0.01) 
MDD - SCZ (t=3.2, p<0.01) 
BPD - PR (t=3.1, p<0.01) 
BPD - SCZ (t=2.8, p<0.01) 
SCZ - NC (t=2.6, p<0.05) 

Composite medication index 
(psychopathology sample) 

p<0.05 SCZ - PR (t=9.2, p<0.001) 
BPD - PR (t=8.4, p<0.001) 
SCZ - MDD (t=5.5, p<0.001) 
BPD - MDD (t=4.8, p <0.001) 
MDD - PR (t=2.9, p<0.05) 
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TABLE S7. Sensitivity analysis  
 

Condition Within 
DMN 

Between 
DMN and 

CON 

Between 
NAc and 

DMN 

Between 
NAc and 

CON 

Full sample -0.25 0.32 0.13 -0.14 

Smoking status -0.26 0.33 0.13 -0.15 

Composite medication 
load  

-0.24 0.33 0.11 -0.13 

 
 
 
 
 
TABLE S8. Comparison of BAS Subscales 
 

BAS Scale Within 
DMN 

Between 
DMN and 

CON 

Between 
NAc and 

DMN 

Between 
NAc and 

CON 

BAS Reward -0.25 0.32 0.13 -0.14 

BAS Drive -0.19 0.23 0.08 -0.10 

BAS Fun -0.17 0.23 0.05 -0.08 

 
 
 
 
 
TABLE S9. Specificity Analysis 
 

Scale Within 
DMN 

Between 
DMN and 

CON 

Between 
NAc and 

DMN 

Between 
NAc and 

CON 

BDI -0.01 -0.05 0.00 0.04 

BDIfatigue  -0.03 -0.02 -0.05 0.08 

CAINS 0.07 -0.10 -0.01 0.06 

STAI -0.03 -0.05 0.06 0.00 
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