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Supplemental Methods  
 

1. Sample collection  

 

Recurrent major depression (MD) cases were recruited from 58 provincial mental health centers 

and psychiatric departments of general medical hospitals in 45 cities and 23 provinces of China 

(1). Controls were recruited from multiple locations including general hospitals and local 

community centers. All subjects were Han Chinese women with four Han grandparents. Cases 

were between 30 and 60 and had two or more episodes of MD meeting DSM-IV criteria with the 

first episode between ages 14 and 50, had not abused drugs or alcohol before their first 

depressive episode, and reported no history of schizophrenia or mania. The study protocol was 

approved by the Ethical Review Board of Oxford University and the ethics committees of all 

participating hospitals. All participants provided their written informed consent. 

 

 

2. Sample phenotyping 

 

All subjects were interviewed using a computerized assessment system, which lasted on average 

two hours for a case and one hour for a control. All interviewers were trained by the China, 

Oxford, and VCU Experimental Research on Genetic Epidemiology (CONVERGE) team for a 

minimum of one week in the use of the interview. The interview includes assessment of 

psychopathology, demographic and personal characteristics, and psychosocial functioning. 

Interviews were tape-recorded and a proportion of them were listened to by the trained editors 

who provided feedback on the quality of the interviews. Diagnosis of MD was established with 

the Composite International Diagnostic Interview (CIDI) (WHO lifetime version 2.1; Chinese 

version), which classifies diagnoses according to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-IV) criteria. The interview was originally translated into Mandarin by a team of 

Chinese psychiatrists with the translation reviewed and modified by members of the 

CONVERGE team. 

 

 

3. Adversity measures  

 

A binary measure of adversity was derived from self-reported stressful life events (SLE) and 

childhood sexual abuse (CSA) in order to identify individuals exposed to severe environmental 

adversities while reducing the burden of multiple testing. The SLE questionnaire was adapted 

from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders (2) and assessed 

16 traumatic lifetime events and the age of their occurrence (Table S1). Because of evidence that 

sensitive subjects like CSA are more accurately reported with more confidential methods of 

assessment (3), participants were asked to fill in a paper questionnaire about CSA. The questions 

asked whether, before the subject was 16, did any adult, or any other older person, involve the 

subject in any unwanted incidents like inviting or requesting them to do something sexual, 

kissing or hugging in a sexual way, touching or fondling private parts, showing their sex organs, 

making them touch the person in a sexual way, or attempting or having sexual intercourse. The 

possible responses were “never,” “once,” and “more than once.” We used these responses to 

define three forms of CSA (12): i) nongenital CSA including sexual invitation, sexual kissing, 
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and exposing ii) genital CSA including fondling and sexual touching and iii) attempted or 

completed intercourse. While it is known that the patterns of association with MD differ between 

some forms of environmental stressors (4), this heterogeneity is expected to be comparatively 

small and so for these analyses we grouped them together to maximize statistical power and 

reduce multiple testing. Subjects were considered an “adversity case” if they i) had non-missing 

data on SLE and CSA scales and ii) endorsed any CSA and/or had high aggregate SLE scores 

(+3SD). Since SLE vary in severity, the SLE score was constructed by weighting each item by 

their effect size on MD and summed across each of the 16 items. SLE in MD cases were only 

included if they preceded MD onset. We assume this data-adaptive weighting does not 

significantly bias our downstream inferences: (1) we are focused on the interaction effect (even 

though various forms of adversity are known risk factors for developing MD, there is no a priori 

reason to assume that it would impact the direction of an interaction of such a variable with 

genetic risk), (2) the weights are not used directly in analyses - only used to identify if the 

individual has experienced extreme adversity or not, and (3) our weighted score is similar to the 

SLE count score (r = 0.698, P-value < 2.2x10-16) and previous weights from an independent US 

sample of European descent (e.g., assault/marital problems strongest, financial/job-loss weakest) 

(5). Using adversity exposure status we grouped samples into those that are “adversity exposed” 

and those that are “not exposed”. In order to reduce effects of retrospective recall, both sections 

of the CSA and SLE questions were separate from the MD section, occurring many minutes later 

toward the end of the interview. We did this in part to reduce the chances of “correlated errors” 

in recall that might arise in “seeking after meaning.”  

 

4. Sample sequencing, imputation, and genotype quality control   

 

CONVERGE obtained sequence on 11,670 samples and imputed genotypes using methods 

described in Cai et al. (6,7). Twenty-nine samples were excluded because of low imputation 

quality (maximum genotype probability < 0.9) in more than 10% of imputed sites. 392 samples 

were removed for being likely duplicates or first-degree relatives and beyond. 117 samples were 

excluded due to an excess number of private variants in the genic regions of their nuclear 

genome. A further 90 samples were excluded on the basis of an excess number of heteroplasmic 

sites in their mitochondrial genome. Removing a further 431 samples with incomplete phenotype 

information would give the set of 10,640 samples on which we previously reported our primary 

GWAS on MD (5,303 cases of MD, 5,337 controls) (6). As our current analyses involved testing 

associations using the logistic regression framework which is less effective in controlling for 

relatedness between samples, we further removed 164 samples with genetic relatedness greater 

than 0.15 (leaving us with 5,279 cases, 5197 controls), of which 877 samples did not self-report 

information on adversity, giving us a final set of 9,599 samples (4,785 cases, 4,814 controls) 

with full phenotypic information for our final analysis. 

 

 

5. Obtaining odds ratio for major depression using logistic regression 

 

While the linear mixed model provides increased power, effect sizes obtained on a linear scale 

from retrospective, ascertained case-control data are difficult to relate to the prospective effect 

sizes that are of primary interest. To obtain and access the difference between odds ratios (OR) 

of associations in different cohorts, we perform logistic regression on all 4,313,801 SNPs for all 
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the above analyses in PLINK (version 1.9) (8,9) with 10 principal components (PC) obtained 

from eigen-decomposition of a kinship matrix constructed with 413,669 linkage disequilibrium 

(LD)-pruned SNPs (that were used for linear mixed model association in BOLT-LMM (10)) 

computed using GCTA (version 1.26.0) (11). We consistently use these PCs for all logistic 

regression analyses (including gene-by-environment interaction test). 

 

 

6. Determining differences in odds ratios of major depression associated loci between the 

adversity unexposed group and the complete CONVERGE cohort 

 

To determine whether difference in the OR we observe between the whole cohort and the 

adversity unexposed subset at rs7526682 and rs11577545 on chromosome 1, rs950893 on 

chromosome 8, and rs12415800 and rs35936514 on chromosome 10 were due to chance 

fluctuations, we obtained empirical distributions of the ORs in subsets of samples of the same 

size as the unexposed subset, and compared them to the observed values. We generate 10,000 

subsets of the cohort by randomly excluding 2,702 samples (1,646 cases, 982 controls) from the 

full cohort (matching numbers of MD cases and controls with self-reported adversity), and run 

logistic regression in PLINK v1.9 (8,9) between the three SNPs as well as rs12415800 and 

rs35936514 on chromosome 10 for comparison, using 10 PCs as covariates. We generate an 

empirical distribution of ORs using the 10,000 random subsets, and obtain the percentile of the 

observed ORs in the adversity unexposed cohort in the empirical distribution. We consider the 

observed ORs from the unexposed cohort a significant change in ORs from the full cohort if it is 

in the top or bottom 0.5th percentile of the empirical distribution (corresponding to P-value < 

0.05, after multiple testing correction for 5 SNPs). Figure S5 and Figure S6 show the distribution 

of 10,000 empirically derived ORs with the vertical red line on each histogram showing the 

observed OR for the same SNP in the adversity unexposed group. 

 

 

7. Gene-by-environment interactions on the additive scale  

 

Interactions significant on one scale may not be so on another (12). Because its results are more 

interpretable, the additive scale is also commonly used (13), but there are statistical issues with 

testing additive regression models for binary data which may lead to loss of power or false 

positive tests of interaction (12). With these caveats in mind, we report in Table S2 and Table S5 

interactions on the additive scale using one such test (BLM) (14). For all analyses we examined 

boundary constraints and found none were active at the default criterion of 10-6.  

 

 

8. Aggregate gene-by-environment interactions  

 

Aggregate GxE interactions were tested by two methods. First, GCTA was used to estimate the 

proportion of variance in major depression due to aggregate additive gene-by-environment 

interaction between adversity and all GRM SNPs (11,15). Here, the main effect of the 

environmental variable (adversity) is included in the model as a fixed effect and the GxE 

interaction effect is treated as a random effect. A significant variance component for GRMxE 

indicates support for ‘omnibus’ GxE interaction across the genome regardless of direction and 
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can be considered a ‘qualitative test’. Second, we tested for significant polygenic risk score by 

environment interaction (PRSxE). In contrast to GRMxE interaction, PRSxE interactions can be 

considered a ‘quantitative test’ and is dependent on a consistent direction of SNPxE interactions. 

If the PRS includes too few SNPs that have true GxE effects in the same direction, too many null 

SNPs, or is not a sufficient indicator of genetic risk (low r2) then a PRSxE interaction would not 

be detected which highlights some limitations of a PRS-based approach. 

 

 

9. Adjustment for ascertainment in SNP-based heritability estimation  

 

To adjust for ascertainment, we obtain adjusted SNP-based heritability (h2
SNP) at best-estimate 

population prevalences for each group. We previously reported our best estimate of a population 

prevalence (K) of MD of 8% (16). Assuming the sample adversity prevalences within cases and 

controls are similar to their population counterparts, we estimate that the population prevalence 

of MD in the exposed is 0.128 and of the unexposed is 0.066 (see below).  

 

In detail, we start off with a prevalence estimate of K = 0.08 for MD in the whole cohort, then we 

make the following premises:  

 

1. We have ascertained MD in our study since it is a case control study 

2. BUT the adversity measure is NOT ascertained as we have not collected our cases and 

controls based on whether they have had any adversities in the past. This means 

proportions of adversity-exposed vs unexposed samples in our depression (MD) cases and 

controls mirror that in cases of MD and non-cases in the population. This is regardless of 

whether MD and adversity are independent. 

 Therefore, in our data where: 

nCases = nCaseAdversity + nCaseNoAdversity = 1646+3139 

nAdversity = nAdversityCases + nAdversityControls = 1646+982 

  

Assuming premise 2 is true, then prevalence of adversity in depression cases and controls 

can be obtained from our data (K denotes prevalence):  

K_AdversityCases = nAdversityCases/nCases = 1646/(1646+3139) = 0.34 

K_AdversityControls = nAdversityControls/nControls = 982/(982+3832) = 0.20 

  

Then, knowing prevalence for depression is 0.08, we estimate population prevalence of 

adversity by: 

K_AdversityAll = K_AdversityCases*K_MDAll + K_AdversityControls*(1-K_MDAll) = 

0.34*0.08 + 0.20*0.92 = 0.215 
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Prevalence of depression in the adversity exposed group is essentially the conditional 

probability of having depression when one had been exposed to adversity, and that of 

depression in non-exposed group is the conditional probability of having depression when 

one had not been exposed to adversity. Hence, we are able to apply Bayes’ Rule P(A|B) = 

P(A and B)/P(B) to arrive at the conditional probabilities as stated above. This is shown 

explicitly below: 

K_MDAdversity = P(MD|Adversity) 

= P(MD intersect Stress)/P(Adversity) 

= P(Adversity|MD)*P(MD)/P(Adversity) 

= K_AdversityCases*K_MD/K_Adversity 

= 0.34*0.08/0.215 

= 0.127 

  

K_MDNoAdversity = P(MD|NoAdversity) 

= P(MD intersect NoStress)/P(NoAdversity) 

= P(NoAdversityMD)*P(MD)/P(NoAdversity) 

= (1-K_AdversityCases)*K_MD/(1-K_Adversity) 

= (1-0.34)*0.08/(1-0.215) 

=0.067  

 

 

10. Estimation of heritability under different assumptions and frameworks  

 

We note that differences in methods used for h2
SNP

 estimations may have large impacts on the 

estimates and their interpretations (17-20). In addition to using GCTA for our estimates, we 

performed the following analysis to formally account for uneven LD in dense imputed data and 

potential biases in h2
SNP

 estimations from restricted maximum likelihood (REML). First, to fully 

utilize all imputed SNPs in capturing genetic variation, while accounting for uneven LD, we also 

calculated h2
SNP

 estimates using an LD-weighted GRM constructed with all 4,313,801 SNPs used 

in association testing and their LD-weights computed in LDAK (version 5.9) (17), with 10 PCs 

from the eigen-decomposition of this GRM as covariates. Second, we assessed potential 

underestimates from REML in ascertained case/control data using PCGC (19)), using the same 

GRM we use for GCTA, and the 10 PCs from the eigen-decomposition of this GRM as 

covariates. For both analyses, we report h2
SNP

 estimates on the liability scale corrected for 

population prevalence as stated above. The results are displayed in Table S4 and are consistent 

with the trends shown in h2
SNP from GCTA analyses. 
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11. Assessment of G-E correlation 

 

Since G-E correlation can bias GxE results, we tested for G-E correlation by three methods. 

First, using the bivariate option in GCTA (15) the genetic correlation (ρ) was estimated between 

MD and adversity and tested if different from 0 or 1. Second, G-E correlation was examined by 

testing for association of MD-PRS with adversity in the full sample, MD-cases only, and controls 

only. Finally, an exploratory test of G-E correlation was examined by genome-wide correlation 

of SNP odds ratios from comparing results from adversity GWAS of MD-cases to controls. In 

order to obtain odds ratios for case-control group comparisons logistic regression was run in 

PLINK as described above in Supplemental Methods (5. Obtaining odds ratio for major 

depression using logistic regression). 

 

 

12. Simulations of a single SNP effect under the presence and absence of etiologic 

heterogeneity 

 

Overview 

 

We use simulations to mirror genetic approaches presented above to discern features of etiologic 

heterogeneity and to demonstrate stratification of samples (such as adversity) are appropriate 

means for uncovering heterogeneous genetic effects. The three simulated scenarios were as 

follows:  

 

a) SNP effect and adversity exposure contribute additively to MD liability (no etiologic 

heterogeneity),  

b) SNP effect is only present in the adversity unexposed MD subtype (reflecting etiologic 

heterogeneity), and  

c) h2
SNP estimates under the presence and absence of etiologic heterogeneity by replacing 

the single causal SNP with polygenic contributions in models a) and b) above.  

 

For each simulation, SNP effects were then tested under four logistic regression models: I) 

ignoring the effect of adversity on MD, II) controlling for the effect of adversity on MD by 

incorporating it as a covariate, III) including an interaction between SNP and adversity, and IV) 

analyzing adversity exposed and unexposed cohorts separately.  

 

 

Liability threshold model 

 

We simulated SNP, adversity, and SNP-by-adversity effects using a liability threshold model 

(equation 1): a single causal SNP (g), an additive effect of adversity (s), and a SNP-by-adversity 

interaction (g * s, using * for element-wise multiplication): 

 

(1)   
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Above, yi is the latent MD liability for individual i; gi is their genotype at the causal SNP drawn 

independent and identically distributed (i.i.d.) from a Binomial distribution (Bin(2,.3)) with 

minor allele frequency (MAF) of 0.30; si is a 0-1 variable indicating whether individual i was 

adversity exposed, drawn i.i.d. from a Bernoulli distribution (Ber(.23)) with mean similar to the 

proportion of the CONVERGE samples endorsing extreme adversity; and ei is i.i.d. Gaussian 

noise with variance 1.  

The regression coefficients (𝛽) define the contribution of each model term and are used 

to modify equation 1 to reflect simulation scenarios a) and b) such that when 𝛽𝑔𝑠= 0 there is no 

SNP-by-adversity interaction modeled; when 𝛽𝑔 = 0 but 𝛽𝑔𝑠 ≠0 the SNP acts only on the 

adversity exposed individuals; and when 𝛽𝑔 = −𝛽𝑔𝑠the SNP acts only on the unexposed 

individuals. 

 

 

Ascertainment of MD cases and adversity 

 

To simulate ascertainment of MD cases and adversity exposure, we generate genotypes, 

adversity variables, and MD liabilities for one million samples (the population), define 

individuals with the largest 5% of liabilities to be MD cases (similar to 8% prevalence we 

assume for severe recurrent MD in Han Chinese women), then draw 5100 cases and 5100 

controls from their respective populations. Specifically, the adversity effect size and prevalence 

were chosen so that after ascertainment the average fraction of adversity among cases (35.3%) 

and controls (22.3%) approximately matched the observed proportions in CONVERGE (34.4% 

and 20.4%, respectively). For scenarios a) and b), we simulated 1,000 independent replicate 

datasets with a single causal SNP effect. For scenario c), the single SNP was replaced with a 

polygenic contribution from 10,000 simulated, independent SNPs (below).  

 

 

Simulations of a single SNP effect under the absence of genetic heterogeneity 

 

As detailed above, 1,000 independent replicates of a SNP effect were used to generate average 

test statistics from Equation 1 under four models (I - only SNP effect, II - SNP effect plus 

adversity covariate, III - model II plus SNP-by-adversity interaction term, IV - analysing effect 

of SNP in adversity exposed and unexposed cohorts separately). The genetic effect size was 

chosen so the logistic regression results from the simulated data (Table 3) were comparable to 

the observed CONVERGE results in Tables 1 and 2 (i.e., chromosome 10 loci). Specifically, to 

reflect the absence of heterogeneity, the SNP, adversity, and GxE regression coefficients in 

equation 1 were set to 0.078, 0.30, and 0, respectively. The average test statistics from the 

logistic regression models (I-IV) are displayed on the left panel of Table 3.  

 

 

 

Simulations of a single SNP effect under the presence of genetic heterogeneity 

 

To model etiologic heterogeneity, the baseline simulation was modified by setting 𝛽𝑔 =

0.0975 = −𝛽𝑔𝑠, so that the SNP acts only on the unexposed individuals. We multiply 𝛽𝑔 by 

1.25 in all simulations where the genotype acts only in the unexposed cohort to compensate for 
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the reduced sample size and to obtain qualitatively similar z-scores. The results from this 

simulation are displayed in the right panel of Table 3.  

To complement the etiologic heterogeneity simulation above, where the SNP was causal 

only in the unexposed cohort, we also reversed the simulation, where the SNP was only causal  

in the exposed cohort (Table S5). To do this, we set 𝛽𝑔= 0.156 and 𝛽𝑔𝑠 =  0.Results did not 

qualitatively change, though all tests had lower power, which is expected since the adversity 

exposed sample size is smaller than the unexposed group. 

We also considered a variety of modifications to this baseline simulation, none of which 

affected the qualitative conclusions in the main text: we modified the population MD prevalence 

from 5% to 1% and 20%; the MAF from 30% to 5% and 50%; the Gaussian noise in the liability 

simulation to logistic noise; and finally scenarios where case/control labels are simulated directly 

from a generalized linear model using either the probit or logit link functions. Full simulation 

details for these extensions are available upon request. 

 

 

13. Simulations of polygenic effects under the presence and absence of etiologic heterogeneity 

 

Overview 

 

We use simulations similar to those above, replacing the single causal SNP with a polygenic 

contribution from 10,000 simulated, independent SNPs. We then estimate h2
SNP to determine the 

expected features when the full cohort and subgroups are simulated to have: 1) equal h2
SNP, 2) 

varying degree of genetic correlation (ρ = -1 to 1), and 3) unequal h2
SNP. We also compare these 

h2
SNP estimates to models including the environmental stressor (adversity) as a covariate and 

estimate the proportion of MD variance due to aggregate GxE interaction. Since estimates can 

vary under alternate assumptions all estimation was performed using both maximum likelihood 

(ML) and the Haseman-Elston regression (HE) (19,20). The resulting h2
SNP

 estimates from the 

overall cohort with and without accounting for adversity exposure are shown in Figure S8. The 

two within-cohort measures (exposed versus unexposed), along with genetic correlation and GxE 

estimates, are shown in Figure S9. The results confirm our prior intuition: without heterogeneity 

(where all causal SNPs are shared), within-group average heritabilities coincide with the overall 

average heritability, though the attenuated sample sizes induce larger variance in the within-

group estimators; however, as heterogeneity increases (or causal variant sharing decreases), the 

overall heritability decreases while the within-cohort heritabilities remain constant. On a 

methodological note, ML gave downward biased estimates compared to HE, with the exception 

of genetic correlation estimates (Figure S8, Figure S9), as expected (19). 

 

 

 

Generation of major depression liability from a standard polygenic linear mixed model 

 

We modify our above single-SNP simulations to be polygenic by using 10,000 causal SNPs. 

Unlike in the above simulation, however, the causal effect sizes will be determined randomly, 

and independently, for each of 200 simulated datasets. We generate liabilities within each 

adversity exposed and unexposed cohort from a standard linear model:  
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(2) 

 

(3)  

    

 

We again use i.i.d. Bernoulli draws for entries of adversity status (s), now with mean .24; the 

noise term is distributed normally (e ~ N(0,.57I)). Each column of G, the vector of genotypes at a 

specific SNP, is drawn i.i.d. Binomial (Bin( 2,q )), where q is drawn i.i.d. for each locus from a 

uniform distribution (Unif[0.05,0.5]).  

We marginally draw the causal SNP effects in each 𝛽𝑠from a spherical Gaussian 

distribution. Without etiologic heterogeneity, 𝛽0= 𝛽1. Complete heterogeneity, on the other 

hand, means 𝛽0and 𝛽1 are entirely independent. To bridge these extremes, we define a set S of 

SNPs where the 𝛽 agree, i.e.𝛽𝑆
0=𝛽𝑆

1. Outside of this set S, each SNP is causal in only one 

adversity cohort. |S| = 0 gives complete heterogeneity; |S| = L means all SNPs (and thus all 

genetic liability) are shared between the two adversity cohorts. Formally, let S be the set of 

common SNPs and S0 and S1 the SNPs unique to the adversity unexposed and exposed cohorts 

respectively. We take |S0| = |S1| = ((L-|S|)/2).We then define 𝛽 by:  

 

 

 

 

     

  

 

 

 

 

 

These definitions ensure the overall genetic variance (𝜎𝑔
2) is 0.35. 

After defining the liabilities y’ from this linear mixed model, we define samples with the 

largest 15% of liabilities to be cases, and then draw from this latent population of size 1,000,000 

the same number of cases and controls as in the observed CONVERGE data (4,745 and 4,830, 

respectively). Finally, we drop rows of the simulated genotype matrix G corresponding to 

samples that were not ascertained, scale its columns (SNPs) to zero mean and unit variance, and 

then create kinship matrices by: 

 

 

(4) 

 

 

Alternative parameterization of genetic correlation   

 

We now consider an alternative way to define the effect sizes in 𝛽. Above, some fraction of loci 

had identical effects in both adversity cohorts, while others were active in only one (‘Different 

Causal SNPs’). Instead, we can set all loci to affect both cohorts, but with different, yet 
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correlated, effect sizes. Independently at each locus l, we draw the two effect sizes from a 

Normal distribution:  

     

 

(5)  

 

    

When 𝜎𝑔0
2 ≠ 𝜎𝑔1

2 ,the two cohorts have different heritabilities: this may well happen in the real 

data if, for example, predisposition to develop depression is highly heritable, but after exposure 

to stress this predisposition becomes essentially irrelevant. The parameter rho (𝜌) plays a role 

similar to the fraction of shared causal SNPs in the original simulation above because in both 

cases, a value of zero results in completely independent genetic architectures between the 

adversity exposed and unexposed cohorts, and a value of one indicates the genetic architectures 

are completely overlapping. One difference is that 𝜌 can be negative. 

Results from this simulation are displayed in Figures S8 and S9, when 𝜎𝑔0
2 = 𝜎𝑔1

2  (‘Equal 

Heritability’), 𝜎𝑔0
2 = 4𝛿𝜎𝑔1

2  (‘Unequal Heritability’), along with results using the above 

simulation (‘Different Causal SNPs’) where SNP effects are equal between-group but only a 

portion of effects are shared. Because these ‘Equal Heritability’ and ‘Different Causal SNPs’ 

simulations parameterize identical models, results are identical – the only difference is that only 

in the former scenario is 𝜌 < 0 feasible.  

     

    

SNP-based heritability estimation  

  

After simulating case/control phenotypes y, genotypes G, and adversity indicators s, we fit a 

variety of heritability estimates. Each is defined by a kinship matrix and phenotype vector:  

● h2: overall heritability using all phenotypes and all genotypes to create the kinship matrix 

● h2_s: overall heritability accounting for stress, modifying the above phenotypes and 

kinship by projecting out the adversity covariate s; e.g., for the phenotype, if s is centered 

and scaled, this amounts to replacing y with  y - sTy 

● h2s = 0: heritability using only adversity unexposed samples 

● h2s = 1: heritability using only adversity exposed samples    

 

Each of these parameters is estimated both with ML and HE regression. Assume, for 

notational simplicity, that the case/control labels y have been standardized to mean zero and unit 

variance. ML fits heritability by maximizing a (misspecified) Gaussian likelihood for y:  

 

 

(6)  

 

 

The optimization is performed with the R package phenix (21), which uses well-known 

eigendecomposition identities to expedite inference (22).  

This likelihood function is motivated by the Gaussian linear model used to create the 

above liabilities y’. However, the likelihood is clearly misspecified for two reasons: first, the y 

variables are binary, not continuous (because of liability thresholding); second, ascertainment is 
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not accounted for. One proposal to correct these two problems is to simply rescale the heritability 

estimates (23):  

 

     

(7) 

 

 

where P and K are the sample and population disease prevalences, respectively, and 𝜙 and 𝜑are 

the standard normal density and distribution functions, respectively. We only ever report these 

rescaled estimates, h ̃2. 

Even after this correction, however, MLEs remain downwardly biased (19). So we also 

implement HE regression to estimate heritability, which simply regresses phenotypic similarity 

on genetic similarity: if x ̃ and y ̃ contain, respectively the upper triangular entries of K and yyT : 

 

 

(8)       

     

 

For each of the four heritabilities defined above, both ML and HE estimates–adjusted for 

non-normality and ascertainment–were obtained from between 50 and 300 independently 

simulated datasets for each (simulation type, estimation type, 𝜌) combination. Figure S8 plots the 

resulting averages (± 2 empirical standard deviations) for the two estimates that aggregate groups 

(h2 and h2_s), while Figure S9 plots results from analyses that distinguish the two groups (h2
s=0 

and h2
s=1). The observed CONVERGE data estimates are also provided for reference, though 

their error bars represent standard errors, rather than standard deviations. 

Broadly, the overall heritability increases linearly as the causal SNP overlap increases 

(this linearity is provable for HE regression); however, only when the causal SNPs perfectly 

overlap is the whole-cohort heritability as large as the within adversity exposure groups 

heritabilities. Further, the downward bias of ML is evident for all causal overlaps and types of 

heritabilities.  

We also estimate genetic correlation 𝜌(15) and GxE variance (𝜎𝐺𝑥𝐸
2 ) (11). These 

estimates can also be used to discern between-group heterogeneity and are included as additional 

rows of Figure S9. The 𝜌 is unbiasedly estimated by both ML and HE and the methods give 

similar standard deviations (with the possible exception that HE behaves strangely for extreme 

values of 𝜌 and unequal variance, which is at least partially because we did not truncate marginal 

HE heritabilities to [0, 1]). ML estimates of 𝜎𝐺𝑥𝐸
2 , however, appear to be downwardly biased. 
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Supplemental Tables 
 

TABLE S1. Prevalence of 16 stressful life events and odds ratio for major depression. 

 

This table shows the number of samples with self-reported answers for each life event item (n 

Total), the number of which are cases of MD (n Case), the number of which are controls (n 

Cont.), and the percentage of samples that replied “Yes” to the life event question are shown 

below (%). The odds ratio (OR) with 95% confidence interval [95%CI] of each life event in MD 

from logistic regression are displayed with corresponding P-value. 

  
Life Event Question n Total 

  

n Case 

(%) 

n Con. 

(%) 

OR 

[95%CI] 

P-value 

1. Have you ever had a spouse, child, or 

sibling die? 
11848 

18.2% 

1178 

19.8% 

988 

16.5% 

1.62 

[1.46,1.78] 

1.07x10-21 

2. Have you ever been divorced or 
long-term marital separation? 

11921 

13.0% 

1091 

18.3% 

462 

7.7% 

2.51 

[2.23,2.83] 

6.48x10-53 

3. Have you ever been unemployed or 

seeking work for more than a month? 
11922 

13.4% 

940 

15.8% 

657 

11.0% 

1.28 

[1.14,1.43] 

1.36x10-5 

4. Have you ever been fired from a job? 11923 

5.3% 

440 

7.4% 

187 

3.1% 

2.03 

[1.70,2.43] 

1.12x10-14 

5. Have you ever had a major financial 

crisis? 
11923 

16.4% 

1166 

19.6% 

784 

13.1% 

1.58 

[1.43,1.75] 

8.05x10-19 

6. Have you ever had problems with the 

police or go to court? 
11923 

2.4% 

223 

3.7% 

64 

1.1% 

3.38  

[2.55,4.53] 

6.51x10-17 

7. Have you ever had a serious illness? 
  

11293 

9.8% 

712 

12.0% 

460 

7.7% 

1.82 

[1.60,2.07] 

1.98x10-20 

8. Have you ever been involved in a 

life-threatening accident?       
11304 

7.6% 

479 

8.5% 

379 

6.7% 

1.25 

[1.08,1.45] 

0.002 

9. Have you ever been involved in a 
fire, flood, or natural disaster? 

11305 

11.0% 

614 

10.9% 

633 

11.1% 

1.01 

[0.90,1.14] 

0.830 

10. Have you ever witnessed someone 

being badly injured/killed? 
11305 

8.0% 

476 

8.5% 

431 

7.6% 

1.10 

[0.95,1.26] 

0.189 

11. Have you ever been raped? 

  
11305 

0.99% 

108 

1.9% 

4 

0.1% 

21.35  

[8.91,69.92] 

2.16x10-9 

12. Have you ever been physically 
attacked or assaulted?   

11305 

5.1% 

411 

7.3% 

160 

2.8% 

2.41  

[1.99,2.92] 

2.36x10-19 

13. Were you ever physically abused as 

a child? 
11305 

2.8% 

259 

4.6% 

53 

0.9% 

4.63 

[3.45,6.33] 

4.19x10-23 

14. Were you ever seriously neglected 
as a child? 

11305 

6.3% 

597 

10.6% 

118 

2.1% 

4.82  

[3.94,5.94] 

2.47x10-51 

15. Were you ever threatened with a 

weapon, held captive or kidnapped? 
11305 

1.0% 

87 

1.5% 

23 

0.4% 

3.01  

[1.92,4.92] 

4.10x10-5 

16. Have you had any other terrible 

experience in your lifetime? 
11929 

6.2% 

472 

7.9% 

264 

4.4% 

1.68  

[1.43,1.97] 

1.66x10-10 
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TABLE S2. Association of clinical features with adversity exposure. 

 

This table shows the association of clinical characteristics with adversity exposure separately for 

major depression (MD) cases and controls. The mean value or proportion (Prop.) of the sample 

endorsing each clinical feature is listed for adversity unexposed (unexp.) and exposed (exp.) 

subgroups. The corresponding odds ratio (OR), 95% confidence interval (95%CI), P-value, and 

proportion of variance (R2) due to each clinical characteristic from linear or logistic regression is 

displayed. BMI is body mass index, Age-of-onset is age of MD onset, and GAD is generalized 

anxiety disorder.  
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TABLE S3. Tests for gene-by-environment interaction between adversity and genetic variants 

on the additive scale. 

 

This table shows the regression coefficient (Est.), standard error (SE), and P-value of SNP 

association with MD in the full cohort in linear regression model with a binomial link (Methods), 

with an interaction term (on the additive scale) between SNP and self-reported adversity 

(adversity:SNP) term included in Model 1, and without it in Model 2. All analyses performed 

included 10 principal components as covariates, bold font indicates significant genetic effect (P 

< 5.0x10-8) or gene-by-environment interaction (P < 0.005).  

 

  

Test Model 1: Interaction Model 2: Covariate 

Est. SE P-value Est. SE  P-value 

chr1: rs7526682_G 0.065 0.014 7.93x10-6 0.043 0.012 0.0004 

adversity 0.195 0.015 2.81x10-39 0.174 0.013 1.89x10-40 

adversity:rs7526682 -0.079 0.028 0.0045 - - - 

chr1: rs11577545_T 0.060 0.012 1.28x10-6 0.030 0.010 0.0032 

adversity 0.215 0.016 3.39x10-40 0.172 0.013 1.72x10-39 

adversity:rs11577545 -0.097 0.023 2.01x10-5 - - - 

chr8: rs950893_G -0.055 0.011 3.90x10-7 -0.037 0.009 6.72x10-5 

adversity 0.136 0.017 3.66x10-15 0.172 0.013 1.33x10-39 

adversity:rs950893 0.067 0.020 0.0010 - - - 

chr10: rs12415800_A 0.040 0.010 6.45x10-5 0.036 0.008 1.21x10-5 

adversity 0.183 0.021 7.45x10-18 0.173 0.013 2.18x10-40 

adversity:rs12415800 -0.011 0.018 0.5476 - - - 

chr10: rs35936514_T -0.040 0.011 0.0003 -0.044 0.009 5.48x10-6 

adversity 0.179 0.017 1.06x10-26 0.175 0.013 1.31x-40 

adversity:rs35936514 -0.010 0.021 0.6118 - - - 
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TABLE S4. Meta-analysis association results of major depression in adversity exposed and 

unexposed groups. 

 

This table shows the results from fixed-effect (FE) and random effect (RE2) meta-analysis in 

METASOFT for SNPs associated with MD in the subgroup unexposed to adversity, with effect 

sizes and standard errors from the BOLT-LMM approximation to infinitesimal leave-one-

chromosome-out linear mixed model association analysis. The meta-analysis is performed for the 

SNP effects in adversity exposed and unexposed subgroups: 1) P-values and effect sizes (beta) 

are shown for fixed effect (FE) analysis; 2) new random effect (RE2) model proposed in Han and 

Eskin, 2011 (24) mean effect statistic (Mean Effect Stat) equivalent to the fixed effect statistic, 

heterogeneity effect statistic (Het. Stat) for non-zero between-study variance, and P-values; and 

3) results from tests of heterogeneity including Cochran’s Q test (Q), Het. Stat tests the same 

hypothesis as Cochran’s Q test, and approaches Q statistic (stat) asymptotically (with increasing 

number of studies), and I2 which describes the percentage of total variation across studies that is 

due to heterogeneity rather than chance (25).    

 

Chr RSID 

1: FE 2: RE2 3: Heterogeneity 

P-value beta P-value 

Mean 

Effect 

Stat 

Het. 

Stat 

Q 

P-value 

Q  

Het. 

Stat 

I2 

1 rs7526682 1.70×10-5 0.045 5.37×10-6 18.50 7.00 3.12×10-4 12.99 92.30 

1 rs11577545 2.02×10-4 0.032 2.89×10-7 13.82 12.88 9.42×10-6 19.63 94.90 

8 rs950893 6.84×10-6 -0.036 1.35×10-7 20.24 7.89 1.82×10-4 14.01 92.86 

10 rs12415800 7.33×10-8 0.035 8.91×10-7 24.52 0 0.388 0.74 0 

10 rs35936514 8.04×10-7 -0.039 9.82×10-7 24.35 0 0.643 0.21 0 
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TABLE S5. SNP-based heritability of major depression estimated using GCTA, LDAK, and 

PCGC.  

 

This table shows the SNP-based heritability (h2
SNP) of MD in the full cohort and the respective 

subgroups, estimated with REML in LD-pruned SNPs in GCTA (10) and all association analysis 

SNPs in LDAK (17), and an extension of Haseman-Elston regression model using LD-pruned 

SNPs in PCGC, each with 10 PCs derived from eigendecomposition of the GRMs used as 

covariates. We show the number of cases and controls in each cohort (NCase/NControls), the 

case to control ratio (NCases:NControls) and the heritability estimates (h2
SNP) with standard 

errors (SE), and P-values (P) obtained at best-estimate population prevalence (K).  

 

 

 Full Cohort Adversity Exposed Unexposed 

NCase/NControls 4785/4814 1646/982 3139/3832 

NCases:NControls 0.994 1.676 0.819 

         Prevalence K = 0.08 K = 0.128 K = 0.066 

Estimate h2
SNP

 SE P h2
SNP

 SE P h2
SNP

 SE P 

GCTA 0.305 0.037 <10x10-16 0.342 0.159 0.013 0.380 0.048 1.1x10-16 

LDAK 0.294 0.043 6.9x10-13 0.237 0.190 0.105 0.365 0.056 1.4x10-11 

PCGC 0.258 0.046 2.2x10-8 0.209 0.195 0.283 0.311 0.060 2.4x10-7 
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TABLE S6. Impact on major depression of polygenic risk scores and their interaction with 

adversity.  

 

This table shows the odds ratio (OR) or regression coefficient (Est.), 95% confidence interval 

(95%CI), P-value (P), and the predictive value of each model term reported in terms of 

Nagelkerke’s pseudo-R2 (fmsb package in R) (R2) for multiplicative and additive models 

predicting major depression (MD) including polygenic risk scores (PRS), adversity, and their 

interaction (PRS*Adversity). PRS were constructed by two methods (see Methods): 

CONVERGE trained scores using BLUP SNP-weights (Conv_Blup_Test, Conv_Blup_Train) 

(16), and PGC-MDD trained scores (PGC-Rec_pT0.2) using SNP-weights from PGC GWAS of 

recurrent MD at P-value threshold < 0.2 (26). All analyses performed included 10 principal 

components as covariates, bold font indicates significant effect corrected for 6 tests (P-value < 

0.008). Results indicate no robust PRS by adversity interactions (P-value > 0.044). 
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TABLE S7. Association of major depression polygenic risk scores with adversity as a test of G-

E correlation.  

 

This table shows the odds ratio (OR), 95% confidence interval (95%CI), P-value (P), and the 

predictive value of each model term reported in terms of Nagelkerke’s pseudo-R2 (fmsb package 

in R) (R2) for multiplicative models using polygenic risk scores (PRS) to predict adversity 

status. PRS were constructed by two methods: CONVERGE trained scores using BLUP SNP-

weights (Conv_Blup_Test, Conv_Blup_Train) (16), and PGC-MDD trained scores (PGC-

Rec_pT0.2) using SNP-weights from PGC GWAS of recurrent major depression (MD) (26) (see 

Methods). Four models were tested for each of the three PRS: M1 tested the association of the 

PRS with adversity including MD as a covariate in the entire sample (n = 9599), M2 tested the 

association of the PRS with adversity in the entire sample, M3 tested the association of the PRS 

with adversity in MD cases only (n = 4785), and M4 tested the association of the PRS with 

adversity in controls only (n = 4814). All analyses performed included 10 principal components 

(PCs) as covariates, bold font indicates significant effect Bonferroni corrected for 12 tests (P-

value < 0.004). The PRS were not significantly associated with adversity in cases or controls  (P-

value > 0.105) indicating no significant G-E correlation. 

 

 
Note: 

M1: adversity ~ PCs + PRS + MD (entire sample) 

M2: adversity ~ PCs + PRS (entire sample) 

M3: adversity ~ PCs + PRS (MD-case only) 

M4: adversity ~ PCs + PRS (control only) 
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TABLE S8. Association of top five major depression variants with adversity in the entire 

sample, major depression cases only, and controls only.  

 

This table shows the odds ratio (OR), 95% confidence interval (95%CI), P-value (P), and the 

predictive value of each model term reported in terms of Nagelkerke’s pseudo-R2 (fmsb package 

in R) (R2) for multiplicative models predicting adversity from MD-associated single-nucleotide 

polymorphisms (SNP). Four models were tested for each of the five SNPs: M1 tested the 

association of the SNP with adversity including MD as a covariate in the entire sample (n = 

9599), M2 tested the association of the SNP with adversity in the entire sample, M3 tested the 

association of the SNP with adversity in MD cases only (n = 4785), and M4 tested the 

association of the SNP with adversity in controls only (n = 4814). All analyses performed 

included 10 principal components (PCs) as covariates, bold font indicates significant effect 

corrected for 20 tests (P-value < 0.0025). As expected, this proof of principle exercise shows that 

SNP ORs are in opposite directions for MD case-only and control-only analyses for the three 

SNPs we identified with heterogeneous effects on MD, while we see no differential effects for 

the two SNPs on chromosome 10.  

 

 
 
Note: 

M1: adversity ~ PCs + SNP + MD (entire sample) 

M2: adversity ~ PCs + SNP (entire sample) 

M3: adversity ~ PCs + SNP (MD-case only) 

M4: adversity ~ PCs + SNP (control only) 
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TABLE S9. Examining G-E independence assumption through exploratory case-only and 

control-only genome-wide association of adversity. 

 

In order to evaluate G-E independence, we performed exploratory major depression (MD) Case-

Only and Control-Only genome-wide association studies (GWAS) of adversity (Figure S8). In 

table (a) the P-value threshold is listed with the corresponding number of SNPs below that 

threshold for Case-Only GWAS results for adversity (Case-Only # SNPs) and the number of 

those same SNPs in the Control-Only GWAS for adversity that had a P-value less than 0.05. 

Similarly, for table (b) the P-value threshold is listed with the corresponding number of SNPs 

below that threshold for Control-Only GWAS results for adversity (Control-Only # SNPs) and 

the number of those same SNPs in the MD-Case-Only GWAS for adversity that had a P-value 

less than 0.05. Given the number of tests performed, departure from G-E independence would be 

marked by the proportion of Case-Only to Control-Only SNPs (Percent) significantly exceeding 

5%. The genome-wide correlation of odds ratios between the MD-Case-Only and Control-Only 

for adversity was only r = 0.008. These analyses taken together do not support significant 

systematic G-E correlation. 

 

 

(a) Top adversity-associated SNPs for MD-Case only GWAS 

 

 
 

 

(b) Top adversity-associated SNPs for Control only GWAS 
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TABLE S10. Post-hoc power calculations. 

 

Post-hoc power calculations for single SNP effects were performed using Genetic Association 

Power Calculator (27) and ‘powerGWASinteraction’ package in R for GxE interactions (28) 

using an 8% major depression disease prevalence and 20% adversity prevalence.  

 

Table S10a shows the power (at either P-value < 5.0x10-8 or 0.005) to detect each single-

nucleotide polymorphism (SNP) with its corresponding chromosome (Chr), minor allele 

frequency (MAF), and odds ratio (OR) in (1) the combined sample (Combined, n = 9,599) which 

had non-missing information on adversity, (2) the adversity unexposed subset (Unexposed, n = 

6,971), and (3) the adversity exposed subset (Exposed, n = 2,628). For each subset of the 

CONVERGE data the corresponding number of cases and controls are listed (case/cont) and the 

final column indicates the expected sample sizes needed for 80% to detect each SNP. These 

results indicate we had modest to high power to detect the newly identified variants on Chr 1 and 

8 in the combined and unexposed samples (power > 0.549) but not in the adversity exposed 

subsample (power < 0.040) and limited power to detect the previously identified loci on Chr 10 

(power < 0.271). 

 

 
 

 

Table S10b: The CONVERGE sample is under-powered to perform GWASxE interaction scans 

(power < 0.38), which is why we have not included this type of analysis in the manuscript, we 

limited GxE testing to 5 SNPs (Bonferroni P-value 0.005). The post-hoc power calculations 

indicated that we had high power to detect such interactions (power = 0.956).  
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TABLE S11. Simulation results for single-SNP causal effect only in adversity exposed major 

depression cases. 

 

Average test output from four types of logistic regression on 1,000 simulated datasets: one 

ignoring adversity (model I); one controlling for the additive effect of adversity (model II); one 

additionally incorporating an interaction between genotype and adversity (model III); and finally 

a model which analyzes adversity exposed and unexposed cohorts separately (model IV). For 

each row, Z statistic (Z Stat), odds ratio (OR) and P-value are shown for SNP effect (g), 

adversity effect (s), or an interaction effect (g:s). The three columns show results for simulations 

with heterogeneity between samples with and without adversity; opposite main Table 3, the 

genotype has a causal effect only in adversity exposed samples (Methods). Data was simulated 

using a liability threshold model with realistic ascertainment, effect sizes and allele frequencies.  

 

 

Regression Model 
With Genetic Heterogeneity 

Z Stat OR P-value 

Model I, g 3.86 1.13 1.14E-04 

Model II, g 2.93 1.10 3.35E-03 

Model II, s 18.44 2.32 <2E-16 

Model III, g -0.01 1.00 9.92E-01 

Model III, s 10.20 1.91 <2E-16 

Model III, g:s 4.42 1.36 9.99E-06 

Model IV, g, no 

adversity  
-0.01 1.00 9.92E-01 

Model IV, g, adversity  5.27 1.36 1.39E-07 
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Supplemental Figures 
 

FIGURE S1. Major depression cases endorse significantly more stressful life events than 

controls. 

 

This figure shows the proportion of cases of MD and controls for number of stressful life events 

endorsed. A greater proportion of MD cases report higher levels of stressful life events than 

controls.  
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FIGURE S2. Major depression cases have a higher rate of childhood sexual abuse than controls.  

 

This figure shows the proportion of cases of MD and controls reporting childhood sexual abuse 

(CSA). MD cases report higher levels of each of the types of CSA (NonGenital, Genital, and 

Intercourse), and for any of the three types of CSA (Any_CSA) than controls.  
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FIGURE S3. Quantile-Quantile plots for genome-wide association studies of major depression. 

 

This figure shows Quantile-Quantile plots for GWAS of MD on a) the full cohort, b) the 

subgroups with self-reported adversity exposure, and c) without. The genomic control inflation 

factors were 1.047, 1, and 1.047; the adjusted measure for sample size to that of 1,000 cases and 

1,000 controls (λ1000) were 1.01, 1, and 1.014 respectively.  
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FIGURE S4. Comparison of SNP odds ratios on major depression in full cohort and adversity 

subgroups as well as results from the Psychiatric Genomics Consortium mega-analysis of 

European studies. 

 

This figure shows forest plots of comparison of OR on MD in the full cohort and adversity 

subgroups in CONVERGE with results from the Psychiatric Genomics Consortium (PGC) mega-

analysis of European studies (6) at a) rs7526682 on chromosome 1, b) rs11577545 on 

chromosome 1, and c) rs950893 on chromosome 8. The plots demonstrate all three SNPs have 

larger OR in the subgroup with no adversity than in the full cohort, OR of respective SNPs on 

MD are in opposite directions in adversity subgroups, significant association in PGC samples 

between rs950893 on chromosome 8 and MD (P = 0.009) and in the same direction as observed 

in CONVERGE, and the chromosome 1 loci (rs7526682 and rs11577545) findings were not 

significant in the PGC study (P = 0.37, P = 0.81), although were in the same direction as 

observed in CONVERGE. 
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FIGURE S5. Odds ratios of SNPs on chromosomes 1 and 8 significantly associated with major 

depression in adversity unexposed subgroup are unlikely to arise from stochastic sampling 

effects.  

 

We obtain empirical distributions of the odds ratios (OR) in subsets of samples of the same size 

as the adversity unexposed subset, and compared them to the observed values. We generate 

10,000 subsets of the cohort by randomly excluding 2,702 samples (1,646 cases, 982 controls) 

from the full cohort (matching numbers of MD cases and controls with self-reported adversity), 

and run logistic regression in PLINK v1.9 (7,8) between the three SNPs. Vertical red line on 

each histogram shows the ORs for the same SNP significantly associated with MD in the 

unexposed group. a) rs7526682 (99.9th percentile), b) rs11577545 (100th percentile) and c) 

rs950893 (0.2th percentile) all show significant deviation in OR from the full cohort (P < 0.01 

after multiple testing correction). 
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FIGURE S6. Odds ratios of major depression associated loci on chromosome 10 were not 

significantly different in the adversity unexposed group than from the whole CONVERGE 

cohort. 

 

This figure shows the same analysis from Figure S5 performed on the two SNPs on chromosome 

10 (rs12415800 and rs35936514) that were found to be associated with MD in the whole 

CONVERGE cohort, for comparison with the three SNPs that were only found to be 

significantly associated with MD in the subgroup unexposed to adversity. For both SNPs, their 

odds ratio (OR) for MD were not significantly different in the unexposed group than from the 

whole-cohort. On the left, OR at rs12415800 for MD is at the 79.9th percentile of the empirical 

distribution of 10,000 ORs generated from excluding 2,702 samples (1,646 cases, 982 controls) 

from the full cohort (matching numbers of MD cases and controls with self-reported adversity). 

On the right, OR at rs35936514 for MD is at the 69.2th percentile of the empirical distribution. 

Neither show significant deviation in OR from the full cohort. 
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FIGURE S7. The proportion of major depression cases stratified by self-reported adversity 

exposure for each genetic variant identified depicting gene-by-environment interaction.  

 

The significance for gene by environment interaction (GxE) on the multiplicative scale is 

denoted as Pmult and on the additive scale is Padd . Bars represent 95% confidence intervals. 

  

(a)   A significant (reversed fan-shaped) interaction detected between rs7526682 on chromosome 

1 near LPGAT1 and adversity (GxE Pmult = 0.0016, Padd = 0.0045). 
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(b)  A significant (reversed fan-shaped) interaction detected between rs11577545 on chromosome 

1 in C1ORF95 and adversity (GxE Pmult = 9.31x10-7, Padd = 2.01x10-5). 

 
  

  

(c)   A significant (reversed fan-shaped) interaction detected between rs950893 on chromosome 8 

in SLC25A37 and adversity (GxE Pmult = 0.0003, Padd = 0.0010). 
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(d)  No significant interaction detected between rs35936514 on chromosome 10 in LHPP and 

adversity (GxE Pmult = 0.5010, Padd = 0.6118). 

 
 

  

(e)   No significant interaction detected between rs12415800 on chromosome 10 near SIRT1 and 

adversity (GxE Pmult = 0.5630, Padd = 0.5476). 
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FIGURE S8. Manhattan and Quantile-Quantile plots for exploratory genome-wide association 

of adversity in major depression cases-only and controls-only. 

 

(a) Manhattan plots of adversity for major depression (MD) cases only (top panel) and controls 

only (bottom panel). In each plot, the −log10 P-values of imputed SNPs associated with 

adversity by logistic regression (in order to obtain odds ratios for case-control group 

comparisons) are shown on the y-axes. The horizontal axis gives the position on each 

chromosome; chromosomes are numbered below the axis. All analyses included 10 principal 

components as covariates, red and blue lines indicate genome-wide (5.0x10-8) and suggestive 

(1.0x10-6) significance respectively. 

 

 

 

 

 

  



Page 36 of 41 

(b) This figure shows Quantile-Quantile plots for genome-wide association of adversity on 1: 

major depression (MD) cases only (black line) and 2: controls only (red line).  
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FIGURE S9. Simulation results for overall heritability estimates before and after adjusting for a 

linear effect of adversity.  

 

Simulation results for overall heritability estimates before (top row) and after (bottom row) 

adjusting for a linear effect of stress (adversity). Dotted error bars represent ± 2 standard 

deviations, while the dashed error bars represent ± 2 standard errors. The first two columns use 

distinct parameterizations of an equivalent model where both stress (adversity) groups are 

equally heritable and are partially genetically correlated. The third column uses the same genetic 

correlation parameterization as the first, but assumes the genetic variance in the adversity 

unexposed group is four times larger than in the exposed group.  
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FIGURE S10. Simulation results for within-group heritability, genetic correlation, and GxE 

variance estimates.  

 

Simulation results for within-adversity-group heritability (top row), genetic correlation (middle 

row), and GxE variance estimates (bottom row). Dotted error bars represent ± 2 standard 

deviations, while the dashed error bars represent ± 2 standard errors. Columns index simulation 

parameterizations as in Figure S8.  
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