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Supplemental Methods 

Participants 

This paper reports on a subsample of the baseline cohort from the Children’s Attention 

Project (CAP)(1). Participants were recruited in a two-stage screening and case-

confirmation procedure using the Conners 3 ADHD Index (2) and a diagnostic interview 

(DISC-IV)(3). 

 

As part of the 36-month follow-up, participants were invited to take part in a neuroimaging 

session and diagnostic status was re-assessed. Cognitive assessments and 

neuroimaging were acquired in 179 children (119 male; 83 ADHD; mean age at scan 

[range]=10.4 [9.4-11.9] years). After image acquisition and quality control, the final cohort 

comprised 160 individuals (104 male; 70 ADHD; mean age = 10.4 [9.7-11.9] years. The 

final group did not differ significantly from the full cohort in age (p=0.74), sex (p=0.77), 

socioeconomic status (p=0.94), diagnosis (p=0.56), or ADHD symptoms (hyperactive: 

p=0.77; inattentive: p=0.69). Twenty three individuals with ADHD were taking medication 

for their behavior (methylphenidate: n=21 {Concerta n=11, 1x 54mg, 9x 36mg, 1x 27mg, 

duration = 1month-4years [mean=20.6months]; Ritalin n=7, 10mg, duration = 10months 

– 4years [mean=31months];  Ritalin LA n=3, 2x 20mg [18months and 4years duration], 

1x 30mg [4years]} and atomoxetine: n=2 {Strattera, 1x 18mg[2yrs 3months], 1x 

25mg[6months]). At follow-up, 22 of the original ADHD group no longer met diagnostic 

criteria. 

 

Clinical and cognitive assessment 

Children took part in cognitive assessment, self-report survey and parent. With parental 

consent, questionnaires were also sent to the child’s classroom teacher. Children 

completed the assessment under their usual classroom condition, therefore, if the child 

was currently using medication, they were not asked to cease medication for the 

assessment. Researchers were blind to diagnostic status and details of medication 

history and dosage were recorded at the end of the session. 

 

Key assessment measures were broadly grouped into individual, clinical, cognitive, 

familial and perinatal factors: 

 

Individual factors 

Age, sex and self-reported handedness were recorded. Weight was measured using the 

average of two consecutive measurements using an Invicta portable stadiometer.  

Pubertal stage was assessed using the Pubertal Development Scale (PDS). The primary 

caregiver was asked to rate their child’s physical development on a four-point scale. This 

included questions assessing the presence of characteristics phenotypical of pubertal 
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onset such as deepening of voice and presence of facial hair in boys, and breast 

development and menarche for females. A combined PDS-Shirtcliff (PDSS) score was 

calculated.(4)  

In addition, intracranial volume was estimated using the individual’s T1-weighted image 

after MRI. 

Clinical factors 

ADHD symptom count (inattentive, and hyperactive-impulsive), and comorbid 

internalizing and externalizing behaviour were assessed using the DISC-IV. Children 

were classified as having an internalizing disorder if they met criteria for separation 

anxiety disorder, social phobia, generalized anxiety disorder, post-traumatic stress 

disorder, obsessive-compulsive disorder, hypomania or manic episode, and an 

externalizing disorder if they met criteria for oppositional defiant disorder or conduct 

disorder. 

Additional measures of ADHD symptom severity were collected from the parent and 

teacher Conners 3 ADHD index. Autism spectrum symptoms were assessed using the 

Social Communication Questionnaire (SCQ-Lifetime version); a 40-item questionnaire 

measuring parent reported ASD symptoms.(5) Irritability was assessed using the parent-

reported Affective Reactivity Index,(6) and social problems were assessed using the 

parent-reported subscale from the Strengths and Difficulties Questionnaire (SDQ).(7) 

Details of any ADHD medication history and dosage were also recorded.  

Cognitive factors 

Baseline measures of intellectual function (IQ) was assessed at recruitment using the 

vocabulary and matrix reasoning subtests of the Wechsler Abbreviated Scale of 

Intelligence (WASI).  

The matrix reasoning subtest of the WASI was repeated at follow-up as a measure of 

visuo-spatial reasoning. Academic cognitive functioning was assessed using the Word 

Reading and Math Computation subtests from the Wide Range Achievement Test 4 

(WRAT 4),(8) the Clinical Evaluation of Language Fundamentals (fourth edition; CELF-4) 

screening test.(9) We also collected a teacher-reported 7 item measure of academic 

competence from the Social Skills Improvement System (SSIS).(10)  

As part of a computerised battery, participants undertook several tasks, as follows: The 

Spatial N-Back: the 2-back version of this widely used measure of working memory 

requires flexible updating capabilities. Performance measure were d’, an index of the 

ability to discriminate between targets and non-targets, and c, which represents the 

participants’ impulsivity to respond. The Stop Signal Task(11)  assessed response 

inhibition; subjects perform a choice reaction task and, on a random selection of the trials, 
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an auditory stop signal instructed participants to withhold their response. The stop-signal 

reaction time (SSRT) assessed the ability to stop an initiated response. The Sustained 

Attention to Response Task (SART)(12) is a measure of sustained attention. The fixed 

version of SART is a repeating sequence of digits (1–9). Using a button press, participants 

respond to every digit (go-trial) except ‘3’ (no-go trial). Performance measures of 

omissions, commissions and mean reaction time (ms) were used. Set Shifting: Two target 

pictures that vary along two dimensions (e.g., shape and color) were presented. 

Participants were cued with a letter to respond to the target pictures, according to one 

dimension, thus requiring cognitive flexibility. Performance was assessed using the 

switching cost (the differences between mean switch and non-switch trial reaction times 

within the heterogeneous block). 

Familial factors 

Neighborhood socioeconomic disadvantage (Socio-Economic Indexes for Areas 

Disadvantage Index (SEIFA)(13)) was recorded and parents reported on their years of 

schooling, number of children, and measures of parenting behaviors (warmth, angry, 

consistent) from the Longitudinal Study of Australian Children.(14) 

Parenting behaviours were assessed measured using 6 items assessing parental warmth 

(e.g., how often in the past 6 months did you hug or hold this child for no apparent 

reason?), 5 items assessing angry parenting (e.g., how often are you angry when you 

punish this child?), and 6 items assessing consistent parenting (e.g., how often do you 

think that the level of punishment you give this child depends on your mood?) from LSAC. 

To assess family quality of life, measures were derived using subscales from the Child 

Health Questionnaire (CHQ): family activities (e.g., how often has your child’s behavior 

interrupted various everyday family activities (eating meals, watching TV); time impact 

(e.g., how often has your child’s behavior caused you to cancel or change plans (personal 

or work) at the last minute; and emotional impact (e.g., how much worry or concern did 

child’s emotional well-being or behavior cause you). Parental mental health was assessed 

using the Conners Adult ADHD Rating Scales (CAARS) for ADHD symptoms.(15) The 

Stressful Life Events Scale assessed a range of stressful life events experienced in the 

last 12 months.(16) 

Perinatal factors 

At the CAP baseline assessment (age 6-8 years), parents were asked to retrospectively 

recall risk factors including birth weight and whether time was required in the neonatal 

intensive care unit. Biological mothers were also asked to indicate whether they had drunk 

alcohol, or smoked cigarettes during pregnancy  (0=abstained, 1=consumed during all 

three trimesters) 
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Image acquisition 

All participants completed a 30 minute mock scanning session prior to the MRI scan in 

order to familiarise the child with the MRI procedure. Multimodal MRI data were acquired 

on a 3T Siemens Tim Trio MRI scanner (Erlangen, Germany) at the The Royal Children’s 

Hospital, Melbourne. T1-weighted, multi-echo MPRAGE images were acquired with 

navigator-based prospective motion correction (MoCo) as follows: repetition time (TR) = 

2530 ms; echo time (TE) = 1.77, 3.51, 5.32, 7.20 ms; inversion time (TI) = 1260 ms; flip 

angle = 7°, voxel size = 0.9mm3 isotropic. Diffusion weighted data were acquired using 

25 diffusion gradient directions, b value = 1000 s/mm2, TR/TE = 3200/110 ms, voxel-size 

= 2.4mm3 isotropic, multiband factor = 3, with six interleaved b = 0 volumes. A reverse 

phase encoded image was acquired to correct for magnetic susceptibility-induced 

distortions during EPI acquisition. 

Image pre-processing 

Detailed quality control procedures were followed at each step, beginning with visual 

inspection of all volumes prior to analysis. Volumes with excess movement (n = 5), gross 

acquisition artefact (n = 1), or major anatomical abnormality (n = 2) were excluded. 

Each participant’s T1 image was intensity normalised, corrected for bias field 

inhomogeneities and aligned to MNI152 2mm space using diffeomorphic nonlinear 

registration in ANTs.(17,18) Voxel-wise maps of volume change induced by the 

transformation were characterised by the determinant of the Jacobian operator, referred 

to here as the Jacobian map.  

Cortical thickness and surface ares were computed using FreeSurfer. This software 

performs brain extraction, intensity normalisation, and cortical segmentation and 

tessellation of the grey matter/white matter boundary followed by automated topology 

correction. Cortical geometry was matched across individual surfaces using spherical 

registration. Cortical surfaces were visually inspected by an experienced neuroimaging 

scientist (CM) and manual edits made where necessary, before regeneration of corrected 

cortical surfaces. To reduce computational load, surface data were downsampled from 

the fsaverage surface to the lower-resolution fsaverage6 space (40962 vertices per 

hemisphere). 

Prior to analysis, both tissue volume (Jacobian) maps and cortical thickness and area 

maps were smoothed with a Gaussian kernel of 10 mm FWHM. 

Diffusion data were subjected to eddy current, motion, and susceptibility induced 

distortion correction using topup and eddy tools.(19) Images were skull-stripped, and 

diffusion tensors fit with weighted-least squares. Skeletonised FA and MD maps were 

created by projecting individual data onto a group-average mean FA skeleton 

(thresholded at FA ≥ 0.2 [default value]) in MNI152 1mm space.  
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Linked independent component analysis 

We combined imaging modalities (tissue volume, cortical thickness, cortical area, FA and 

MD) using FSL’s Linked ICA (FLICA) toolbox to extract a set of multimodal imaging 

features for statistical analysis.(20) We performed linked ICA on the full dataset (160 

subjects × 5 modalities) for 10000 iterations. Following previous examples, and given our 

sample size, we initially specified the model to estimate 25 independent 

components,(21,22). This process yielded a set of multimodal components reflecting 

patterns of shared variance present across all image modalities (Figure S2). We also 

performed the decomposition specifying 20 and 30 components to assess model stability 

(Supplemental Results; Figure S4). Prior to linked ICA, variance normalisation was 

performed separately on each set of aligned image maps.(23) FLICA was implemented 

in Matlab R2015b (Natick, MA), code is available at 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA.  

Canonical correlation analysis 

Canonical correlation analysis (CCA) was performed using the canoncorr function in 

Matlab R2015b. Both imaging and phenotypic data were tested for normality before CCA. 

We used CCA to define multivariate associations between each subject’s demographic 

and behavioural data and the multimodal imaging features derived from linked ICA 

(Figure S1A). CCA aims to identify linear relationships between datasets by maximising 

the correlation between two canonical variates, 𝑈 and 𝑉, that are each constructed from 

a weighted sum of the variables in each dataset, 𝑋 and 𝑌, such that 𝑈 = 𝑎𝑋 and 𝑉 = 𝑏𝑌, 

where 𝑎  and 𝑏  are the canonical weights optimised by the model. Successive linear 

transforms are sought under the constraint that they are uncorrelated with other pairs. 

The strength of association between each pair of canonical variates is referred to as the 

canonical correlation. 

CCA is sensitive to outliers and non-normally distributed data, we therefore applied a set 

of transformations to the phenotypic data to account for both non-normality and missing 

data in the original dataset. Following Smith et al.(24), data were first normalised by 

applying a rank-based inverse Gaussian transformation, before standardisation to zero 

mean and unit variance. We then performed a dimension reduction step using principal 

components analysis (PCA), retaining enough components to explain at least 90% of the 

variance in the original dataset.  During PCA, we accounted for missing data by estimating 

the subject × subject covariance matrix in an elementwise fashion, calculating covariance 

for each pair of subjects while ignoring missing variables. This covariance matrix was 

then projected to the nearest valid symmetric positive definite matrix before eigenvalue 

decomposition. This process mitigates the risk of overfitting through dimension reduction, 

avoids the need for imputation of missing data values, and results in a set of normally 

distributed component weights for CCA.(24)  
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As some variables were missing for a relatively large number of participants 

(Supplementary Table 1), we also tested this approach after removing all variables with 

missing data for more than 20% of subjects (n=4), and all subjects missing more than 

20% of variables (n=11), though we found that this did not significantly affect the model 

(Figure S4). 

As both demographic and imaging components represented a linear combination of the 

original variables (derived from PCA and linked ICA, respectively), we can assess the 

contribution of each of the original variables to the final model by calculating the loading, 

or correlation, between the original variable (e.g.: 𝑋1, . . . , 𝑋𝑛 ) and their respective 

canonical variate (𝑈1, . . . , 𝑈𝑚) in each pair, where 𝑛 is the number of original variables in 

𝑋 and 𝑚 is the number of canonical pairs.(24) 

Validation cohort  

T1-weighted images were downloaded and processed as in the NICAP cohort to derive 

tissue volume (Jacobian) maps in MNI152 space. Of 263 NYU cases, 17 failed initial QC 

inspection or were missing T1-weighted images, a further 7 were excluded due to a poor 

registration to the study template, and 8 were excluded due to no ADHD or hyperactivity 

data, resulting in n=231. Diffusion data were not available for this cohort but, as the spatial 

loading maps derived from linked ICA and CCA are inherently correlated across 

modalities, we are able to proceed using just tissue volume maps (thus also avoiding the 

need to also perform Freesurfer segmentations for each participant).  

Reorganising the tissue volume maps into a 2D (voxel × subject) matrix, we performed a 

multivariate linear regression, regressing the spatial loading maps from the original 

analysis (as a voxel × component matrix) onto the NYU tissue volume data to estimate a 

set of weights that represent a subject-specific loading for each component map in the 

independent NYU cohort (Fig S1).(25) 

Associations between component weight and age, ADHD diagnosis, degree of 

hyperactivity and inattentiveness measured using the CPRS, and IQ in the NYU cohort 

were then tested using linear regression in SPSS (v21; NY: IBM Corp.). To account for 

skew in some clinical measures, data were first normalised by applying an rank-based 

inverse Gaussian transformation before performing regression. 

Head motion 

Motion is an important consideration for neuroimaging studies of clinical populations.(26–

28) Here, we estimate in-scanner motion using a measure of framewise displacement in 

both the NICAP and NYU cohorts (see Supplemental Results). 



Page 8 of 21 

Supplemental Results 

Model stability and motion considerations 

Repeating the analysis after regressing ICV from the data; selecting a different number 

of linked ICA components to summarise the multimodal imaging data; removing variables 

or subjects with >20% missing data; and regressing out estimates of in-scanner motion. 

We found, for the most part, that the factor structures remained the same under these 

perturbations (Figure S4), with the exception of the fourth component, where some factor 

loadings (e.g. male sex, pubertal stage) varied across runs. This may be due to statistical 

power - as the canonical pairs are ordered according to strength, the fourth pattern 

represents the weakest of the significant correlations within the data – alternatively, the 

varying factor structures may reflect a different canonical pair was ordered fourth in these 

runs.  

In-scanner motion can adversely affect metrics derived from both structural and diffusion-

weighted MRI.(26–28) We performed a number of additional analyses in order to 

determine the impact of in-scanner motion on our observations. For each participant in 

the NICAP cohort, we calculated framewise displacement (FD) as the mean displacement 

between adjacent diffusion volumes as a marker of in-scanner motion.  

In the NICAP cohort, FD did correlate with the number of hyperactive (R2=0.04, p=0.44), 

or inattentive (R2=0.001, p=0.725) symptoms. Regressing FD from the imaging and 

phenotypic data prior to CCA did not affect the number of significant canonical 

correlations, the phenotypic factor structure (Figure S4), or the associated spatial loading 

maps.  

Using FD values calculated in the NYU cohort,(27) we found that in-scanner motion 

correlated with age (R2=0.029, p=0.011), hyperactivity (R2=0.03, p=0.007) and, to a 

lesser extent, inattentiveness (R2=0.017, p=0.052). However, FD was not associated with 

expression of either imaging component 2 (p=0.19) or 3 (p=0.63), and the inclusion of FD 

as a covariate did not affect the reported associations between component expression 

and age and hyperactivity (see main Results section). 

Finally, we used partial least squares regression to derive a single motion-related imaging 

component (r=0.63, p<0.001) in the NICAP cohort and, using multivariate linear 

regression, we derived an expression weight for this imaging marker in the NYU cohort. 

This motion component did not correlate with either hyperactivity (R2=0.003, p=0.403), or 

inattentiveness (R2=0.01, p=0.124) in the NYU cohort. 
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Neuroimaging markers and ADHD diagnosis 

Although the aim of the study was to examine symptoms dimensionally, we also 

performed a post-hoc analysis to explore how each imaging marker varied categorically 

as a function of ADHD diagnosis. In subjects with a persistent ADHD diagnosis (i.e.: 

participants who passed diagnostic criteria for ADHD at both the baseline and follow-up 

CAP sessions), we observed a small, statistically significant effect of diagnosis on 

expression of the third imaging marker (ADHD n=58; Control n=80; t136=2.09, Cohen’s 

d=0.36, p=0.039) only. Participants were further stratified into subtypes: inattentive 

(n=30); hyperactive (n=5); or combined (n=23). Imaging marker strength was highest in 

individuals with the combined type (mean score = 0.62), followed by hyperactive (0.27) 

and inattentive (-0.11), though the effect of subtype did not reach significance (ANOVA: 

F2,55=3.10, p=0.053).  

As ADHD symptom scores and ratings were included in the construction of each imaging 

marker as part of the CCA analysis, it is perhaps not surpirising that the derived imaging 

pattern should differ between diagnostic groups and this analysis may be considered 

optimistically biased. We therefore replicated this effect in the independent NYU cohort 

using the imaging marker from the NICAP cohort. No phenotypic measures from the NYU 

cohort were used in the derivation of this imaging marker. We found that expression of 

the third imaging pattern was significantly higher in ADHD participants in the NYU cohort 

(t229=3.37, Cohen’s d = 0.45, p<0.001), although there was no significant main effect of 

subtype within the ADHD cohort (ANOVA: F2,129=1.4, p=0.325). The comparable 

diagnostic effects (Cohen’s d = 0.36 in NICAP compared to 0.44 in the NYU cohort) which 

are in line with other estimates of effect size between diagnostic groups in ADHD.(29) No 

other markers differed between groups. We also did not find a significant interaction 

between imaging score and ADHD diagnosis when predicting hyperactivity (p=0.15) or 

inattentiveness (p=0.29), supporting the dimensional view of ADHD, as the relationship 

between the imaging marker and hyperactive behaviour spanned diagnostic groups, 

confirming previous reports of structural and functional neuroanatomical correlates of 

ADHD behaviours in healthy controls.(30,31) 

Hierarchical linear regression in the validation dataset 

We performed an additional hierarchical linear regression to further explore the 

relationship between the third imaging marker and hyperactivity in the NYU cohort by 

including sex, age and IQ in the first level and marker strength in the second. The full 

model explained almost 10% of variance in NYU hyperactivity score (R2=0.097). The 

addition of component weight to the model induced a significant increase in model 

goodness-of-fit (R2 change=0.029, F1,217=6.89, p=0.009). The addition of framewise 

displacement (in-scanner motion) to the model did not alter this relationship (final model: 

R2=0.12, p<0.001; R2 change=0.04, F1,206=8.45, p=0.004). 



Page 10 of 21 

  



Page 11 of 21 

TABLE S1. NICAP cohort demographic data 
Demographic factors Source Mean (range) Missing (%) 

Individual factors    

Age - years P 10.4 (9.4  -11.9)  

Weight - kg D 39.3 (20.4 - 82.2) 3 (1.9) 

Pubertal stage  P 1.4 (1.0 - 4.0) 8 (.05) 

Male sex  n(%) P 104 (65)  

Left handed n(%) C 26 (16.3) 1 (0.6) 

Intracranial volume - mL D 1236.3 (954.3 - 1512.2)  

Clinical factors    

Hyperactive symptoms  P 2.4 (0.0 - 9.0)  

Inattentive symptoms  P 3.6 (0.0 - 9.0)  

Medication status n(%) P 23 (14.4)  

Parent’s ADHD index  P 5.8 (0.0-20.0) 5 (3.1) 

Teacher’s ADHD index T 3.5 (0.0 - 20.0) 28 (17.5) 

Externalising disorder n(%) P 45 (28.1) 1 (0.6) 

Internalising disorder  n(%) P 26 (16.3) 1 (0.6) 

ASD symptoms  P 4.9 (0.0 - 23.0) 3 (1.9) 

Irritability  P 3.3 (0.0  -12.0) 8 (5.0) 

Social difficulty  P 2.0 (0.0 - 9.0) 5 (3.1) 

Cognitive factors    

IQ  D 100.1 (69 - 139)  

CELF: language  D 20.1 (9.0 - 32.0) 3 (1.9) 

WRAT: maths  D 95.5 (64.0 - 130.0) 1 (0.6) 

WRAT: reading D 102.0  (55.0 - 145.0) 1 (0.6) 

WASI: v/s reasoning  D 22.0 (7.0 - 33.0) 1 (0.6) 

Academic competence  T 98.3 (64.0 - 121.0) 28 (17.5) 

N-back: c  D 0.17 (-1.04 - 1.13) 28 (17.5) 

N-back: d’  D 2.95 (0.18 - 4.39) 28 (17.5) 

Stop-signal: SSRT -  ms D 294.7 (102.3 - 572.7) 28 (17.5) 

SART: commission D 5.6 (0.0 - 18.0) 39 (24.4) 

SART: omission  D 7.0 (0.0 - 26.0) 39 (24.4) 

SART: RT - ms D 477.1 (234.3 - 741.8) 39 (24.4) 

SS: Mean cost  D 158.8 (-1461.2 - 877.0) 64 (40) 

Familial factors    

Parental education: year 9 or less (%) P 8 (5) 3 (1.9) 

year 10/11 (%) P 31 (19.4)  

year 12 or above (%) P 118 (73.8)  

No. siblings  P 1.8 (0.0 - 6.0) 3 (1.9) 

Angry parenting P 2.0 (1.0 - 4.8) 10 (6.3) 

Consistent parenting  P 4.1 (1.3 - 5.0) 11 (6.9) 

Parenting warmth P 4.2 (2.54 - 5.0) 10 (6.3) 

Parent ADHD symptoms P 49.3 (33.0 - 90.0) 10 (6.3) 

QoL: emotional  P 69.6 (0.0 - 100.0) 8 (5.0) 

QoL: family P 78.5 (0.0 - 100.0) 8 (5.0) 

QoL: time  P 85.7 (0.0 - 100.0) 9 (5.6) 

Stressful events  P 1.0 (0.0 - 5.0) 9 (5.6) 

SEIFA P 1017.7 (936.0 - 1128.0) 2 (1.3) 

(Continued)  
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(Table S1 Continued) 

Perinatal factors    

Birth weight - kg P 3.41 (0.35 - 4.80) 5 (3.1) 

NICU n(%) P 29 (18.1) 3 (1.9) 

Maternal alcohol☨  n(%) P 17 (10.6) 15 (9.4) 

Maternal smoking☨  n(%) P 18 (11.3) 15 (9.4) 

☨ alcohol and smoking levels: 1=smoked or consumed alcohol though all three trimesters 

Source: C = child; D = direct assessment, P = Parent, T = teacher 
ASD= autism spectrum disorder; CELF= Clinical Evaluation of Language Fundamentals NICU=  time in neonatal intensive care unit; 
QoL= Quality of Life; RT= response time; SART= Sustain Attention to Response Time task; SES = Socioeconomic status; SS= Set 
Shifting task; SSRT= stop signal response time; WASI = Wechsler Abbreviated Scales of Intelligence; WRAT= Wide Range 
Achievement Test.  

 

 

 

TABLE S2. ADHD-200 NYU cohort demographic data 

Demographic factors Mean (range) Missing (%) 
Age - years 11.6 (7.2 - 18.0)  

Male n(%) 146 (63.1)  

Intracranial volume - mL 1319.3 (1014.8 - 1639.4)  

ADHD index 60.6 (40.0 - 99.0)  

Hyperactive/impulsvity index 59.2 (41.0 - 90.0)  

Inattentive index 60.4 (40.0 - 90.0)  

IQ (range) 107.8 (73.0 - 142.0) 10 (4.3) 
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TABLE S3. Full phenotypic variate structure 
 Pair 1: Head size Pair 2: Development Pair 3: ADHD symptoms Pair 4: Cognitive profile 

Demographic factors Loading [95% CI] 
Varexp  

p Loading [95% CI] Varexp p Loading [95% CI] Varexp p Loading [95% CI] Varexp p 

Individual factors             

Age 0.11  [0.01, 0.23] 0.01 0.162 0.31  [0.20, 0.43] 0.07 <0.001* 0.33 [0.21, 0.45] 0.05 <0.001* -0.14  [-0.29, 0.00] 0.01 0.073 
 

Weight 0.04  [-0.06, 0.16] 0.00 0.584 0.88  [0.86, 0.93] 0.57 <0.001* 0.06  [-0.04, 0.17] 0.00 0.423 -0.04  [-0.16, 0.07] 0.00 0.623 

Pubertal stage -0.19  [-0.30, -0.10] 0.03 0.019 0.34  [0.24, 0.44] 0.09 <0.001* -0.27  [-0.39, -0.16] 0.04 <0.001* -0.25  [-0.38, -0.13] 0.03 0.002 

Male sex 0.49  [0.42, 0.59] 0.22 <0.001* -0.11  [-0.21, 0.01] 0.01 0.166 0.45  [0.37, 0.55] 0.10 <0.001* 0.35  [0.27, 0.47] 0.06 <0.001* 

Left handed -0.02  [-0.12, 0.08] 0.00 0.802 0.05  [-0.07, 0.16] 0.00 0.562 0.22  [0.12, 0.33] 0.03 0.005 -0.14  [-0.25, -0.03] 0.01 0.087 

Intracranial volume 0.94  [0.94, 0.96] 0.82 <0.001* -0.09  [-0.20, 0.02] 0.01 0.262 0.05  [-0.06, 0.14] 0.00 0.561 0.00  [-0.10, 0.12] 0.00 0.965 

Clinical factors             

Hyperactive symptoms 0.05  [-0.05, 0.17] 0.00 0.504 -0.17  [-0.28, -0.05] 0.02 0.035 0.39  [0.28, 0.50] 0.08 <0.001* -0.21  [-0.33, -0.10] 0.02 0.009 

Inattentive symptoms 0.04  [-0.07, 0.15] 0.00 0.611 -0.09  [-0.20, 0.03] 0.01 0.279 0.19  [0.08, 0.30] 0.02 0.064 -0.06  [-0.18, 0.05] 0.00 0.417 

Medication status 0.01  [-0.10, 0.13] 0.00 0.860 -0.33  [-0.44, -0.23] 0.08 <0.001* 0.29  [0.19, 0.38] 0.04 <0.001* -0.08  [-0.20, 0.05] 0.00 0.341 

Parent’s ADHD index -0.06  [-0.18, 0.04] 0.00 0.412 -0.12  [-0.24, 0.00] 0.01 0.138 0.29  [0.18, 0.40] 0.04 <0.001* -0.05  [-0.18, 0.06] 0.00 0.513 

Teacher’s ADHD index 0.12  [-0.01, 0.24] 0.01 0.191 -0.02  [-0.17, 0.11] 0.00 0.810 0.19  [0.06, 0.33] 0.02 0.029 0.11  [-0.02, 0.25] 0.01 0.223 

Externalising symptoms -0.04  [-0.16, 0.07] 0.00 0.584 -0.14  [-0.27, -0.02] 0.01 0.078 0.16  [0.03, 0.27] 0.01 0.048 0.01  [-0.14, 0.13] 0.00 0.891 

Internalising symptoms 0.04  [-0.07, 0.16] 0.00 0.594 0.05  [-0.07, 0.17] 0.00 0.525 -0.21  [-0.33, -0.10] 0.02 0.008 0.09  [-0.04, 0.22] 0.00 0.242 

ASD symptoms -0.02  [-0.14, 0.09] 0.00 0.770 -0.08  [-0.19, 0.04] 0.00 0.328 0.37  [0.27, 0.48] 0.07 <0.001* 0.12  [0.00, 0.24] 0.01 0.130 

Irritability -0.24  [-0.36, -0.13] 0.05 0.003 -0.12  [-0.25, 0.01] 0.01 0.144 0.17  [0.05, 0.29] 0.01 0.035 0.23  [0.11, 0.36] 0.02 0.005 

Social difficulty -0.15  [-0.27, -0.04] 0.02 0.065 0.01  [-0.13, 0.12] 0.00 0.949 0.23  [0.12, 0.36] 0.03 0.004 0.11  [-0.01, 0.24] 0.01 0.160 

Cognitive factors             

IQ 0.21  [0.10, 0.32] 0.04 0.008 0.07  [-0.05, 0.19] 0.00 0.392 -0.23  [-0.35, -0.12] 0.03 0.003 -0.09  [-0.22, -0.03] 0.00 0.249 

CELF: language 0.20 [0.10, 0.32] 0.04 0.011 -0.06  [-0.19, 0.06] 0.00 0.496 -0.06  [-0.18, 0.06] 0.00 0.476 -0.31  [-0.44, -0.21] 0.04 <0.001* 

WRAT: maths 0.39  [0.29, 0.50] 0.14 <0.001* -0.19  [-0.31, -0.07] 0.03 0.019 -0.20  [-0.31, -0.09] 0.02 0.013 -0.07  [-0.19, 0.06] 0.00 0.409 

WRAT: reading 0.30  [0.20, 0.41] 0.08 <0.001* 0.01  [-0.10, 0.13] 0.00 0.866 0.04  [-0.08, 0.17] 0.00 0.593 -0.18  [-0.31, -0.05] 0.01 0.026 

WASI: v/s reasoning 0.31  [0.20, 0.41] 0.09 <0.001* 0.01  [-0.13, 0.11] 0.00 0.937 -0.15  [-0.28, -0.04] 0.01 0.060 -0.23  [-0.36, -0.13] 0.02 0.003 

Academic competence 0.13  [0.00, 0.26] 0.02 0.142 -0.17  [-0.30, -0.04] 0.02 0.059 -0.03  [-0.15, 0.10] 0.00 0.768 -0.30  [-0.44, -0.18] 0.04 <0.001* 

N-back: c 0.05  [-0.08, 0.16] 0.00 0.594 -0.13  [-0.26, -0.02] 0.01 0.137 -0.02  [-0.16, 0.11] 0.00 0.789 0.18  [0.05, 0.33] 0.02 0.036 

N-back: d’ 0.13  [0.01, 0.26] 0.02 0.137 -0.25  [-0.39, -0.12] 0.04 0.005 -0.14  [-0.27, 0.00] 0.01 0.111 0.14  [0.00, 0.29] 0.01 0.103 

Stop-signal: RT -0.05  [-0.18, 0.07] 0.00 0.555 0.15  [0.03, 0.29] 0.02 0.079 0.28  [0.15, 0.40] 0.03 0.001 0.17  [-0.04, 0.31] 0.00 0.059 

SART: commission 0.00  [-0.13, 0.12] 0.00 0.968 -0.08  [-0.22, 0.05] 0.00 0.381 -0.05  [-0.21, 0.08] 0.00 0.594 0.13  [-0.02, 0.29] 0.01 0.156 

SART: omission -0.15  [-0.29, -0.02] 0.02 0.111 0.04  [-0.12, 0.18] 0.00 0.697 -0.02  [-0.16, 0.13] 0.00 0.871 -0.06  [-0.22, 0.10] 0.00 0.531 

SART: RT -0.35  [-0.48, -0.24] 0.12 <0.001* 0.10  [-0.02, 0.23] 0.01 0.232 -0.24  [-0.38, -0.11] 0.03 0.009 0.01  [-0.15, 0.11] 0.00 0.889 

SS: Mean cost -0.27  [-0.43, -0.11] 0.07 0.008 -0.13  [-0.30, 0.03] 0.01 0.204 -0.16  [-0.30, -0.01] 0.01 0.130 -0.27  [-0.43, -0.12] 0.03 0.009 

(Continued)  
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(Table S3 Continued) 

Familial factors             

Parental education 0.05  [-0.06, 0.16] 0.00 0.514 -0.08  [-0.20, 0.03] 0.00 0.322 -0.23  [-0.35, -0.12] 0.03 0.003 -0.17  [-0.29, -0.05] 0.01 0.036 

No. siblings -0.19  [-0.30, -0.09] 0.03 0.015 -0.24  [-0.35, -0.13] 0.04 0.004 0.06  [-0.06, 0.16] 0.00 0.491 -0.07  [-0.20, 0.04] 0.00 0.343 

Angry parenting -0.06  [-0.19, 0.06] 0.00 0.443 -0.12  [-0.25, 0.01] 0.01 0.147 0.25  [0.14, 0.38] 0.03 0.002 0.05  [-0.08, 0.18] 0.00 0.581 

Consistent parenting 0.12  [0.02, 0.24] 0.01 0.134 -0.10  [-0.21, 0.01] 0.01 0.238 -0.31  [-0.44, -0.19] 0.05 <0.001* 0.10  [-0.04, 0.23] 0.00 0.236 

Parenting warmth -0.05  [-0.15, 0.06] 0.00 0.569 0.00  [-0.12, 0.12] 0.00 0.998 0.20  [0.10, 0.32] 0.02 0.012 0.10  [0.03, 0.22] 0.00 0.234 

Parent ADHD symptoms -0.10  [-0.22, 0.01] 0.01 0.236 0.04  [-0.08, 0.16] 0.00 0.654 0.04  [-0.08, 0.18] 0.00 0.586 0.09  [-0.05, 0.22] 0.00 0.262 

QoL: emotional 0.15  [0.05, 0.27] 0.02 0.058 0.17  [0.04, 0.28] 0.02 0.041 -0.21  [-0.33, -0.08] 0.02 0.011 -0.13  [-0.26, -0.01] 0.01 0.103 

QoL: family 0.02  [-0.09, 0.14] 0.00 0.820 0.14  [0.03, 0.28] 0.01 0.079 -0.29  [-0.40, -0.18] 0.04 <0.001* -0.07  [-0.19, 0.05] 0.00 0.401 

QoL: time 0.13  [0.03, 0.25] 0.02 0.101 0.15  [0.02, 0.27] 0.02 0.074 -0.27  [-0.39, -0.16] 0.04 <0.001* -0.14  [-0.26, -0.02] 0.01 0.010 

Stressful events -0.04  [-0.15, 0.06] 0.00 0.593 0.03  [-0.07, 0.14] 0.00 0.687 0.38  [0.27, 0.49] 0.07 <0.001* -0.02  [-0.15, 0.12] 0.00 0.800 

SEIFA 0.22  [0.12, 0.32] 0.04 0.006 -0.16  [-0.29, -0.05] 0.02 0.041 -0.09  [-0.21, 0.03] 0.00 0.280 0.08  [-0.03, 0.22] 0.00 0.320 

Perinatal factors             

Birth weight 0.22  [0.11, 0.32] 0.04 0.007 0.08  [-0.03, 0.20] 0.00 0.334 -0.01  [-0.13, 0.11] 0.00 0.919 0.07  [-0.05, 0.21] 0.00 0.359 

NICU 0.10  [0.00, 0.20] 0.01 0.221 -0.11  [-0.22, 0.00] 0.01 0.189 0.26  [0.17, 0.38] 0.04 <0.001* 0.06  [-0.06, 0.18] 0.00 0.485 

Maternal alcohol -0.09  [-0.20, 0.02] 0.01 0.301 0.16  [0.05, 0.26] 0.02 0.060 0.18  [0.08, 0.28] 0.02 0.029 0.10  [-0.03, 0.23] 0.00 0.218 

Maternal smoking -0.08  [-0.20, -0.03] 0.01 0.330 -0.08  [-0.19, 0.05] 0.00 0.367 0.02  [-0.14, 0.17] 0.00 0.783 0.43  [0.35, 0.54] 0.08 <0.001* 

variance explained by respective imaging marker *loading significant at p<0.05, after Bonferroni correction for multiple comparisons across demographic factors. ASD= autism spectrum disorder; CELF= 

Clinical Evaluation of Language Fundamentals NICU=  time in neonatal intensive care unit; QoL= Quality of Life; RT= response time; SART= Sustain Attention to Response Time task; SEIFA = Socio-Economic 

Indexes for Areas; SS= Set Shifting task; WASI = Wechsler Abbreviated Scales of Intelligence; WRAT= Wide Range Achievement Test.
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FIGURE S1. Analysis pipeline. Canonical correlation analysis (CCA) is illustrated in A. Multivariate 

associations between phenotypic and imaging data (after dimension reduction with principal component 

analysis (PCA) and linked independent component analysis (ICA), respectively) are sought by calculating 

model weights, a and b, that maximize the correlation between the phenotypic and imaging variates, U and 

V. Phenotypic loadings and spatial loading maps are calculated by correlating the canonical variates with 

the original phenotypic variables and the original imaging data. In B, subject-specific component weights 

are estimated for an independent cohort using spatial loading maps derived from the original CCA using a 

multivariate spatial regression. Associations are then sought between estimated component weights and 

phenotypic data.  
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FIGURE S2. Contribution of each modality to linked ICA The relative weight of each modality across 25 

linked ICA components. All components represented shared patterns of variance across all modalities. 
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FIGURE S3. Multimodal imaging marker of head size. Voxelwise correlations between the first canonical 

imaging variate and each imaging modality are shown. The strength of correlation is shown by the 

colourbar. The corresponding clinical factor structure is shown in Supplementary Table 3. Images are 

available to view on Neurovault (http://neurovault.org/collections/2277/). 
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FIGURE S4. Stability of phenotypic variate structure over different parameter settings. The ten 

phenotypic variables with the largest loading on each of the four phenotypic factors in the original CCA are 

shown. Factor loadings are shown for each after performing CCA with several alternative parameter 

settings: regressing ICV or framewise displacement from the data prior to CCA, removing variables (n=4) 

or subjects (n=11) with a large amount of missing data, and using 20 or 30 linked ICA components as 

imaging variables.  
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