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1 Cohorts 

The present study used six large, genotyped cohorts: three for discovery and three for validation. 

To be eligible for inclusion, individuals were required to: (i) be primarily of non-Hispanic 

European ancestry, (ii) have data on all relevant outcomes and covariates, and (iii) have high-

quality, imputed genotyping data. All cohorts were also required to apply appropriate individual- 

and variant-level quality control thresholds. The cohorts that met these criteria for both analytic 

stages (discovery and validation) are briefly described below in alphabetical order within each 

stage. 

1.1 Discovery cohorts 

Discovery analyses were performed in the three cohorts described below. As genotyping and 

data collection procedures for each cohort have been extensively described elsewhere, we refer 

the reader to those studies for details. Quality control thresholds for these cohorts are described 

in Supplementary Section 4.  

1.1.1 Avon Longitudinal Study of Parents and Children 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a longitudinal study of 

14,541 pregnant mothers living in the former county of Avon, United Kingdom (UK). Details 

on data collection and genotyping have been described in previous publications (1–3). The 

ALSPAC website also contains details on all available data through a fully searchable data 

dictionary (http://www.bristol.ac.uk/alspac/researchers/our-data/). In the present study, only 

the offspring with all relevant data were used in the analyses. Accordingly, the maximum 

sample size used in discovery analyses was 3,582. Using REDCap (4, 5), participants 

completed questionnaires that included the AUDIT; for the current analyses, we used 

responses from the age 22 assessment where available, or responses from age 20 if the 

individual did not participate at age 22. 

 

All participants provided informed consent at the time of recruitment following the 

recommendations of the ALSPAC Ethics and Law Committee. Ethical approval for the study 

was obtained from the ALSPAC Ethics and Law Committee, and the Local Research Ethics 

http://www.bristol.ac.uk/alspac/researchers/our-data/
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Committees. Consent for biological samples has been collected in accordance with the 

Human Tissue Act (2004). We are extremely grateful to all the families who took part in this 

study, the midwives for their help in recruiting them, and the whole ALSPAC team, which 

includes interviewers, computer and laboratory technicians, clerical workers, research 

scientists, volunteers, managers, receptionists and nurses. The UK Medical Research Council 

and Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support 

for ALSPAC. This publication is the work of the authors and S.S-R. will serve as guarantors 

for the contents of this paper. A comprehensive list of grants funding is available on the 

ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-

acknowledgements.pdf). This research was specifically funded by NIH AA018333. 

1.1.2 Netherlands Twin Register 

The Netherlands Twin Registry (NTR) is a national register of twins and multiples, as well as 

their family members. The NTR follows adolescent and adult twins and their relatives over 

time, collecting data on numerous complex traits. NTR is a representative sample of the 

Dutch population (6). Details on data collection and genotyping have been described in 

previous publications (7, 8). In the present study, the maximum sample size for discovery 

analyses was 9,975.  

 

All participants provided informed consent at the time of recruitment. Study procedures were 

performed in accordance with the ethical standards of institutional and/or national research 

committee, as well as the 1964 Helsinki declaration and its later amendments or comparable 

ethical standards. The NTR studies were approved by the Central Ethics Committee on 

Research Involving Human Subjects of the VU University Medical Centre, Amsterdam, an 

Institutional Review Board certified by the U.S. Office of Human Research Protections (IRB 

number IRB00002991 under Federal-wide Assurance- FWA00017598; IRB/institute 

codes, NTR 03-180). 

1.1.3 UK Biobank - Discovery 

The UK Biobank (UKB) is a population-based biomedical study of genetic and 

environmental influences on human health and wellbeing. Genotyped participants completed 
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questionnaires related to a myriad of complex traits. A subset of participants also completed 

an online follow-up protocol, where they answered additional surveys related to mental 

health and substance use. Details on data collection have been described in previous 

publications (9), and can also be viewed via the Data Showcase 

(https://biobank.ctsu.ox.ac.uk/crystal/). The maximum sample size used for discovery 

analyses was 147,267.  

 

All participants provided informed consent at the time of recruitment. Participants also 

provided consent for follow-up via linkage to their electronic health records. As described by 

Sudlow and colleagues (10) the UKB investigators developed a robust Ethical and 

Governance Framework to guide their study procedures, and performed all procedures in 

accordance with the guidelines established by the relevant ethical, institutional, and 

regulatory bodies.  

1.2 Validation cohorts 

Validation analyses were performed in the three cohorts described below. Similar to the 

discovery cohorts, genotyping and data collection procedures for each validation cohort have 

been extensively described elsewhere, and we refer the reader to those studies for details. 

However, as there is more variability in the quality control procedures applied across validation 

cohorts (i.e., there was no single study-wide pipeline), quality control filters are briefly described 

below. 

1.2.1 Collaborative Studies on Genetics of Alcoholism Study 

The Collaborative Study on the Genetics of Alcoholism (COGA) was established to examine 

familial underpinnings of alcohol use disorders and related behaviors (11–13). Alcohol 

dependent probands were ascertained from inpatient or outpatient treatment facilities across 7 

sites in the United States. Family members of the probands were also invited to participate. 

Community individuals and their family members were selected from a variety of sources 

and invited to participate. A proportion of the families in COGA are large and have a high 

density of alcoholism. In the present study, we excluded participants who (i) were not of 

European ancestry, (ii) elected not to drink due to personal (e.g., religious, cultural, health) 

https://biobank.ctsu.ox.ac.uk/crystal/
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reasons, or (iii) did not report being “regular drinkers” (having at least one drink per month 

for 6 consecutive months). After these exclusions, our maximum analytic sample consisted of 

6,390 individuals. 

 

Analyzed variants were imputed using the 1000 Genomes Phase 3 (14) reference panel. 

Imputed SNPs with information scores < 0.30 or individual genotype probability scores < 

0.90 were excluded, as were SNPs that did not pass Hardy-Weinberg equilibrium (HWE p< 

1E-6), and SNPs with a minor allele frequency less than 0.05%. Additional details on 

genotyping procedures and related quality control can be found in previously published 

studies (15).  

  

The Institutional Review Boards at all sites approved this study and all participants provided 

informed consent at every assessment.  

1.2.2 UK Biobank - Validation 

As the UK Biobank was described in Supplementary Section 1.1.3, it is not described again 

here. For the validation analyses, we selected a subset of UKB, consisting of unrelated White 

British participants who were not included in the discovery stage analyses (nmax = 239,719).  

 

Analyzed variants were selected from the third release of the UKB imputed genotype data. In 

the validation cohort, imputed SNPs were subjected to the quality thresholds reported by 

UKB investigators, but they were also filtered on several additional thresholds: imputation 

quality score > .90, minor allele frequency > 1E-5, missingness < .05; unique identifiers only, 

bi-allelic variants only. SNPs were converted to hard-call format (certainty > .90) prior to 

analysis.  

 

We included a lower number of PCs (10) in the validation analyses than GWAS (40) to avoid 

overfitting, given the fact that the analyses are performed on a smaller sample and use 

aggregate genetic predictors instead of individual variants. 
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1.2.3 Vanderbilt University Medical Center Biobank 

The Vanderbilt University Medical Center (BioVU) biobank cohort is been extensively 

described previously (16, 17). BioVU is one of the largest biobanks in the United States, 

consisting of electronic health record data from the Vanderbilt University Medical Center on 

~250,000 patients spanning 1990 to 2017. A subset of BioVU patients of European descent 

(nmax = 91,602) have been genotyped as part of various institutional and investigator-initiated 

projects on the Illumina MEGAEX platform, which contains more than 2 million markers. 

Genotyping and Quality control of this sample have been described elsewhere (16, 17).  

 

Analyzed variants were imputed using SHAPEIT(18)/IMPUTE4(9) with the 1000 genomes 

phase I reference panel, and variants with INFO < .3 were excluded. A subset of SNPs in 

linkage disequilibrium was used to calculate relatedness and principal components of 

ancestry using multidimensional scaling in PLINK v1.9 (19).  We randomly removed one 

individual from pairs of highly related individuals (pihat > .1) to avoid spurious results 

driven by cryptic relatedness, and restricted to a homogenous population of European descent 

defined by principal components of ancestry to avoid population stratification effects.  

Variants were removed if allele frequencies differed significantly (P < 5x10-5) between any 

batch. Finally, we filtered multi-allelic and structural variants, converted dosage data to hard 

genotype calls, and excluded variants with uncertainty > .1 or INFO < .95 

2 Phenotype construction 

The AUDIT consists of 10 self-report items that are scored via 3- or 5-point ordinal scales. Items 

1 through 8 are scored on an ordinal scale ranging from 0 to 4, while items 9 and 10 are scored as 

0-2-4. The scoring scheme has been described in our previous GWAS of AUDIT composite 

scores (20). For consistency, the same phenotyping strategy was applied across all three 

discovery cohorts. However, in UKB, the AUDIT is administered with ‘gating’ or ‘skip’ logic. 

This is described in the Supplementary Section 2.1, where we also describe the steps taken to 

minimize the influence of this survey structure. 
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The distribution of AUDIT scores is shown in Supplementary Table 2. Of note, samples 

broadly differed in their general characteristics: UKB participants were generally older than NTR 

and ALSPAC, and UKB showed higher socioeconomic backgrounds than the general population 

(9, 10, 21). The ratio of females was similar across the cohorts (61%, 62%, 57% in ALSPAC, 

NTR, UKB, respectively). 

2.1 Multiple imputation via chained equations in UK Biobank 

As noted above, the AUDIT was administered with skip logic in UKB, such that only items 1, 9, 

and 10 were administered to all participants. Items 2 and 3 were administered based on the 

response to item 1, and items 4 through 8 were subsequently administered based on the responses 

to items 2 and 3. Unfortunately, this created patterns of missingness across the AUDIT that 

affected the sample size, power, and covariance between the items. We have previously assumed 

that missing responses in the AUDIT represented ‘structural zeroes’ and were re-coded as zeroes 

(i.e., zero imputation) (20). This approach relies heavily on the assumption that the range of valid 

responses on item B are entirely contingent on item A (e.g., it is logically impossible for 

someone to binge drink if they never consume alcohol). While straightforward, this is still an 

imputation model, albeit a restrictive and suboptimal model. 

 

In the present paper, we used multiple imputation by chained equations to minimize the impact 

of missing data on our item-level analyses. Specifically, we used the MICE package in R to 

employ a more advanced imputation model based on participants’ income, frequency of any 

alcohol consumption, frequency of alcohol consumption with meals, current alcohol intake 

versus previous intake 10 years ago, alcohol use disorder diagnosis status (derived from 

electronic health records), propensity for risk taking, and depression. We imputed item-level 

responses that were missing due to skip logic, but did not alter participants’ responses that were 

intentionally left blank. We imputed the dataset 50 times and used the mean imputed value for 

each item in subsequent item-level association analyses; however, the composite scores 

(AUDIT-C and AUDIT-P) were constructed and analyzed using zero imputation (to maintain 

consistency with previous GWAS). For phenotypic analyses, we used a simpler zero imputation 

approach (i.e., recoding missing values as zeroes), as the lavaan v0.6.5 package in R cannot 
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readily integrate multiple imputation when using the weighted least squares estimator for 

categorical variables. 

3 Genome-wide association analyses 

We conducted genome-wide association sample-size weighted meta-analyses in three 

population-based cohorts using METAL. The selection of the sample size weighted approach 

was two-fold. First, we sought to maintain consistency between the meta-analyses in the present 

manuscript and those previously reported (20). Second, we believe this approach is slightly more 

careful than applying weights based on standard errors, which require additional assumptions to 

be valid. For example, if standard errors are not in the same units for any reason (e.g., 

transformations were applied inconsistently across cohorts), weights will be inaccurate. While no 

such errors are present in the current analyses, we nevertheless believe that weighting by sample 

size is the more prudent approach. Each cohort is briefly described below.  

3.1 Avon Longitudinal Study of Parents and Children 

In ALSPAC, we used PLINK v2 to conduct univariate association analyses for each of the ten 

AUDIT items, AUDIT-C composite score, and AUDIT-P composite score. As noted in 

Supplementary Section 1.1.1, only offspring genotypes were used in the discovery analyses, as 

the AUDIT was not administered to mothers. Analyses were further restricted to participants of 

non-Hispanic European ancestries. The association model included covariate for sex, age (20 or 

22), and the first ten principal components of ancestry. 

 

Although we applied the same quality control pipeline to all GWAS results in the present study, 

some quality control was applied centrally by ALSPAC investigators before we obtained the 

data. Specifically, markers with > 2% missingness were excluded, as were those with MAF < 

0.005, INFO < 0.3, and/or HWE p < 5E-7. Individuals missing data on > 5% of markers were 

excluded. We note this for transparency, but also note that we generally applied more stringent 

filters ourselves, as outlined in Supplementary Section 4. 



Page 9 of 22 

3.2 Netherlands Twin Register 

In NTR, we used the fastGWA function of the GCTA software (22) to perform univariate 

association analyses for each of the ten AUDIT items, AUDIT-C composite score, and AUDIT-P 

composite score. The mixed model employed by fastGWA included a random effect with a 

sparse genetic relatedness matrix in order to correct for kinship present in the sample. We 

included sex, year of birth, genotyping platform, and the first five principal components of 

ancestry as covariates in the models. 

3.3 UK Biobank - Discovery 

In UKB, we used BOLT-LMM v2.3.2 (23) to perform univariate association analyses for each of 

the ten AUDIT items, as well as the AUDIT-C and AUDIT-P composite scores. We selected 

BOLT-LMM as our preferred software because it employed a linear mixed model that included a 

genetic variance component, which (i) permitted the analysis of related individuals and (ii) 

improved control of population stratification. The genetic variance component was estimated 

using a set of 483,680 directly genotyped, autosomal SNPs that passed the genotype quality-

control, had minor allele frequency greater than 0.005, Hardy-Weinberg-Equilibrium (HWE) p-

value greater than E–16, and light LD-pruning (window size = 50 kb; variant step-size = 5; r2 = 

0.9) (24). Further details for this pipeline have been previously reported elsewhere (9).  

 

We excluded participants (i) that did not self-report their ethnic background as “White”, “White 

British”, “White Irish”, or “Any other white background”; (ii) whose self-reported sex and 

genetic sex were incongruent; (iii) that were identified as purported sex chromosome aneuploidy 

cases; (iv) that did not pass the sample-level quality control thresholds (9); or (v) that were 

missing data for the required outcome(s) and covariates. Never drinkers and non-current drinkers 

were included in the analyses. 

 

The BOLT-LMM association model included covariates for sex, birth year, sex-by-birth year 

effects, genotyping batch (that also effectively indexed genotyping array), as well as the first 40 

principal components of ancestry, which we estimated ourselves (see (25) for details). Analyzed 

variants were selected from the third release of the UKB imputed genotype data. 
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4 Quality control of association results 

Similar to our previous work (25), we used EasyQC (26) to apply a series of thorough quality 

control filters to our association results. For each cohort, we applied the following thresholds to 

each set of GWAS summary statistics. Filters were applied in the order that they are listed below. 

 

1. We excluded SNPs if either allele corresponded to a value other than “A”, “C”, “G”, or “T”.  

2. We excluded SNPs if any of the following statistics were missing: beta, standard error, p-

value, effect allele frequency, sample size, and imputation quality score (for imputed SNPs).  

3. We excluded SNPs if they had nonsensical or impossible values (e.g., negative standard 

errors, allele frequencies greater than 1 or below 0). 

4. We filtered SNPs with minor allele frequencies less than .005. 

5. We removed SNPs with an imputation quality score < .90.  

6. In the case of duplicated base pair positions (based on GRCh37), we retained the SNP with 

the largest sample size.  

 

After applying the filters described above, we inspected diagnostic plots to further ensure that 

results were not prone to systematic error or bias.  

 

7. We inspected a plot of the allele frequencies in our GWAS sample against those in a non-

Hispanic European reference sample in order to check for discrepancies in allele frequencies 

and errors in strand orientation. 

8. To identify discrepancies in reported p-values, we examined their relationship the reported 

coefficient estimates and their SEs. 

9. We examined a quantile-quantile plot to evaluate whether population stratification had been 

sufficiently accounted for in the GWAS. 

5 Genomic structural equation modeling 

Genomic Structural Equation Modelling (Genomic SEM) (27) is a novel statistical method for 

applying SEM to GWAS summary statistics in order to model the joint genetic architecture of 

complex traits. Genomic SEM is a flexible framework that allows for empirical modeling of 
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multivariate genetic covariance matrices, such as those estimated via linkage disequilibrium 

(LD) score regression (28). Here, we used Genomic SEM to conduct a series of analyses in order 

to study the multivariate genetic architecture of AUDIT items. We highlight three specific aims: 

(i) identify the latent genetic factor(s) structure that best represent the genetic covariance of 

AUDIT items, (ii) evaluate genetic relationships between the latent genetic factors and 

exogenous phenotypes, and (iii) perform multivariate GWAS of the latent genetic factors 

(pending good evidence of an underlying factor structure). 

 

We have extensively described the general background of Genomic SEM in previous 

publications (25, 27). We suggest that readers interested in the methodology of Genomic SEM 

review the original study (27), recent applications to genetic discovery (25, 29), and the online 

tutorial (https://github.com/MichelNivard/GenomicSEM/wiki). The interested reader can find 

example code and additional resources in the extensive online tutorial, which can be used to 

reproduce the analyses carried out in the present manuscript. 

5.1 Confirmatory factor analysis 

Genomic SEM can be used to conduct confirmatory factor analysis (CFA), where theoretical 

models are used to parsimoniously explain the genetic covariances among a set of phenotypes. 

Here, we use CFA to test a series of competing genetic factor models in order to identify the 

model that best fit the data. As in traditional CFA, good fit means that the specified latent genetic 

factor structure adequately explains the observed genetic covariances among the phenotypes. 

 

The AUDIT has been the subject of many factor analytic studies at the phenotypic level 

(Supplementary Table 1). As the phenotypic null hypothesis suggests that the genetic factor 

structure will largely be similar to the phenotypic factor structure, we based our models on the 

existing literature and our own phenotypic factor analysis in UKB (the largest sample), as 

described in the main text. We used unit variance identification was to set the scale of the latent 

factors.  

 

We assessed model fit using conventional indices in SEM: the model χ2 statistic, the Akaike 

information criterion (AIC), the comparative fit index (CFI), and the standardized root mean 

https://github.com/MichelNivard/GenomicSEM/wiki
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square residual (SRMR). As previously described (27), all of these fit indices retain their 

standard interpretation within Genomic SEM except for the model χ2 statistic, which is used as a 

comparative measure of fit to evaluate competing models (akin to AIC) rather than a measure of 

statistical significance. CFI values greater than .90 and SRMR values less than .08 were 

considered reflective of good model fit (30). While models with good fit also traditionally have 

non-significant model χ2 statistics, the test is extremely sensitive in large samples like the ones 

used in this study. As such, the model χ2 statistic is interpreted as a comparative measure of fit to 

evaluate competing models rather than a measure of statistical significance. 

5.1.1 Factor extension 

Factor extension is a method for estimating factor loadings for variables that were not 

included in the original analysis. In the present study, item 6 was excluded from the final 

analysis on the basis of its non-significant SNP heritability. Nonetheless, we were still 

interested in its relationship to the Problems factor to which it should theoretically related.  

 

To estimate the putative loading for item 6, we employed a straightforward two-step 

procedure. In the first step, we freely estimated the correlated factors model again excluding 

item 6. In the second step, we included item 6 and re-estimated the model; however, we fixed 

all of the factor loadings and residual variances for items 1-5 and 7-9 to be the same across 

models. Only the parameters for item 6 were freely estimated in this second step. This 

yielded an unattenuated estimate of the relationship between item 6 and Problems without 

affecting the overall factor structure. 

 

5.1.2 Genetic correlation 

As described in our previous work (25), Genomic SEM can also be used to estimate the 

genetic correlation between a latent factor and an exogenous phenotype that is not included 

in the factor model. We note that this method is preferable over bivariate LD score regression 

for reasons that have been previously explained (25). In the present study, we used this 

method genetic correlations between 100 exogenous phenotypes and the latent genetic 
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factors, Consumption and Problems, as well as Frequency Residual (i.e., the residual genetic 

variance in item 1).  

5.1.3 Multivariate genome-wide association analyses 

We performed multivariate GWASs analyses of the audit latent genetic factors from the best-

fitting model. First, we used the sumstats function to standardize the univariate GWAS 

summary statistics for each of the AUDIT items. Next, we used the userGWAS function to 

run the model in an iterative manner for each SNP, regressing the latent genetic factors on 

the SNP. As the latent genetic factors were the dependent variables in these models, unit 

loading identification was specified for scaling purposes (item 3 for Consumption, item 4 for 

Problems). We applied the field standard genome-wide significance threshold of p < 5e−8. 

6 Biological annotation 

To link our genome-wide association results to putative risk genes and associated biology, we 

performed a series of biological annotation analyses described below.  

6.1 Functional mapping and annotation 

We used FUMA v1.3.5e (31) to study the functional consequences of the lead SNPs for 

Consumption and Problems, which included ANNOVAR categories (i.e., the functional 

consequence of SNPs on genes), Combined Annotation Dependent Depletion (CADD) scores 

(i.e., scores > 12.37 are the  suggested threshold to classify a SNP as deleterious), RegulomeDB 

scores (i.e., biological evidence that the SNP is a regulatory element, scores with 1a representing 

the strongest evidence).  

 

We used FUMA (31) to identify whether the loci associated with Consumption and Problems 

(and SNPs in LD, r2 > 0.1) were previously associated (p < 1E-5) with other traits from the 

GWAS Catalog (version e96 2019-05-03). This information is shown in Supplementary Tables 

13-14).  
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6.1.1 Supplemental results for AUDIT-C and AUDIT-P 

We identified 8 independent loci for AUDIT-C, showing convergence with Consumption 

with a few exceptions: GCKR [previously associated with forms of alcohol behavior  [e.g. 

(20, 32–35)], physical activity, sleep patterns and metabolic traits [e.g. (36–39)], ORC5 

[implicated in acute myeloid leukemia (40), brain volume (41), alcohol consumption (33)] 

and GPR139 [previously associated with smoking behavior (42), anthropometric traits (42, 

43), age at menarche (38), insomnia (44)] were only associated with AUDIT-C, whereas 

others, such as CPS1 [associated with metabolic and anthropometric phenotypes  (44–46) 

and chronic kidney disease (47)], FUT2 [pleiotropic gene associated with e.g., alcohol 

behaviors (20, 33), blood protein levels (48), diarrhea (49), serum cancer antigen levels (50), 

tumor biomarkers (51), vitamin B12 levels (52)] and BTF3P13 [associated with alcohol 

consumption (51, 52) and behavioral disinhibition (53)] were only associated with 

Consumption. The regions including the genes ADH1B, KLB, MAPT, SLC39A8 and RP11-

89K21.1 were common to both Consumption and AUDIT-C. 

 

Compared to the three independent loci that we identified for Problems, we identified 6 

independent loci for AUDIT-P, including a region containing the well-known dopamine 

receptor gene, DRD2. Several of the loci significant in AUDIT-P [KLB, replicating previous 

GWAS of alcohol phenotypes (20, 33–35)], and two novel candidate genes for alcohol, 

RP11-478B11.2, AC064875.2) were not associated with Problems, with the exception of the 

main signal on chromosome 4, including the genes ADH1B and SLC39A8.  

6.2 Gene-based, gene-set, and gene-property analyses 

We performed competitive gene-based association analyses using the multivariate GWAS for 

Consumption and Problems by applying the “Multi-marker Analysis of GenoMic Annotation” 

(MAGMA v1.08) (31) in FUMA. SNPs were mapped to 18,857 protein-coding genes from 

Ensembl build 85 based on physical position. This method accounts for LD patterns, using the 

1000 Genomes European sample as a reference. We used a Bonferroni-corrected significance 

threshold (p < 2.65E-6, adjusted for testing 18,857 genes).  
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We also performed a MAGMA (54) gene-set analysis in FUMA. We used 18,116 curated gene 

sets and Gene Ontology (GO) terms obtained from the Molecular Signatures Database (MSigDB 

v7.0, https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) (55), to study the relationships 

between  Consumption and Problems and the biological processes, molecular function and 

cellular component of the individual gene products. We used a Bonferroni-corrected significance 

threshold (p < 3.23E-6), adjusted for testing 15,485 gene sets). 

6.3 Gene-based analysis of cortical chromatin interaction data 

We used H-MAGMA (56), an extension of MAGMA v1.08 that uses Hi-C data to assign non-

coding (intergenic and intronic) SNPs, to identify trait-associated genes based on their chromatin 

interactions. Exonic and promoter SNPs were assigned to genes based on physical position. We 

used four Hi-C datasets derived from adult brain (57), fetal brain (58), and iPSC derived neurons 

and astrocytes (59) (all available for download: https://github.com/thewonlab/H-MAGMA). The 

results are reported in Supplementary Tables 21-28. We used a Bonferroni-corrected 

significance threshold (p < 9.40E-7, p < 9.41E-7, p < 9.41E-7, p < 9.41E-7, for each analysis, 

respectively). 

6.4 Gene-based analysis of cortical transcriptomic data 

We used S-PrediXcan v0.6.2 (41) to analyze predicted gene expression levels in multiple brain 

tissues, and to test whether the gene expression correlated with the genetic liability of 

Consumption and Problems. As input data, we used the summary statistics for Consumption and 

Problems, pre-computed tissue weights from the Genotype-Tissue Expression (GTEx, v8) 

project database (https://www.gtexportal.org/) as the reference transcriptome dataset (60), and 

covariance matrices of the SNPs within each gene model (based on HapMap SNP set; available 

to download at the PredictDB Data Repository, http://predictdb.org) from 13 brain tissues: 

anterior cingulate cortex, amygdala, caudate basal ganglia, cerebellar hemisphere, cerebellum, 

cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens basal ganglia, putamen 

basal ganglia, spinal cord and substantia nigra. It should be noted that, although GTEx is one of 

the most comprehensive genetic expression databases available to date, brain tissue sample sizes 

https://github.com/thewonlab/H-MAGMA
https://github.com/thewonlab/H-MAGMA
https://www.gtexportal.org/
http://predictdb.org/
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are still modest and thus the statistical power for eQTL discovery may be limited. We used a 

Bonferroni transcriptome-wide significance threshold of p < 3.52E-6 (184,691 gene-tissue pairs).  

7 Polygenic risk score analyses 

To validate our genome-wide association analyses, we performed polygenic risk score 

analyses in three independent cohorts. We calculated either R2 or pseudo R2 to quantify the 

proportion of variance explained by each PRS for each outcome. Specifically, we calculated R2 

for the continuous outcomes in UK Biobank, but pseudo R2 for all other outcomes. For the 

dichotomous outcomes in UK Biobank and COGA, we calculated pseudo R2 using the 

r.squaredLR() function of the MuMIn package in R. However, for the continuous outcomes in 

COGA, we used the r.squaredGLMM() function of the MuMIn package to calculate pseudo R2, 

as that is standard protocol for PRS analyses conducted in the cohort. Please note that the R2 for 

each PRS was calculated using a covariates-only base model, which means that the R2 values are 

not independent of each other (due to shared variance between the PRSs). Finally, please note 

that the COGA models are not directly comparable to the UK Biobank models, as mixed-effect 

models were used in COGA to account for family structure. The phenotyping procedures in each 

cohort are briefly described below. 

7.1 UK Biobank - Validation 

The phenotypes included in the UKB analyses were: (1) drinking quantity (i.e., typical grams of 

ethanol consumed per month based on reports of monthly or weekly quantities of various types 

of alcoholic beverages), (2) drinking frequency (i.e., pseudo-continuous number of typical days 

drinking per month), and (3) lifetime alcohol use disorder (AUD) diagnosis (i.e., ICD10 codes of 

alcohol use disorders (F10.1, F10.2, F10.3) or alcoholic liver disease (K70) in hospitalization 

records, death records, or in-person medical interviews). Because of the small number of AUD 

cases (n = 4,463), a random subset of 20,000 control participants was used in the AUD 

prediction models to improve the imbalanced ratio. We excluded current (n = 10,093) and 

lifetime non-drinkers (n = 9,323) from polygenic analyses of current consumption measures 

(quantity/frequency) and lifetime non-drinkers from analyses of AUD. Townsend Deprivation 
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Index scores account for a large amount of variance in alcohol phenotypes; for that reason, we 

included this variable as an additional covariate. 

7.2 Collaborative Studies on Genetics of Alcoholism Study 

In COGA, the phenotypes included in the analyses were: (1) number of drinks per week (i.e., the 

sum of 4 separate measures: average number of beers/wine/liquor/other alcohol consumed per 

week); (2) maximum drinks in 24 hours; (3) DSM-5 AUD. The measure of maximum drinks in 

24 hours was winsorized [anyone with a value ≥ 66 (mean + 3SD’s) was set to 65]. The number 

of drinks per week and maximum drinks in 24 hours were log-transformed before the analysis to 

account for skew. We included 6,390 individuals who reported being regular drinkers (having at 

least one drink per month for 6 consecutive months). 

7.3 Vanderbilt University Medical Center Biobank 

In BioVU, 1,335 phecodes with at least 100 cases were analyzed. We required the presence of at 

least two International Classification of Disease codes that mapped to a PheWAS disease 

category (Phecode Map 1.2 (https://phewascatalog.org/phecodes) to assign case status (61). 
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