
Supplementary Material to “Brain-based biotypes of psychiatric vulnerability in the acute aftermath of 

trauma” 

 

1. Supplementary Methods 

1.1 Psychometric assessment 

Trauma severity was measured using an Injury Severity Score (ISS) which takes into account multiple injuries 

and anatomical regions based on the Abbreviated Injury Scale(Gennarelli & Wodzin, 2006). The AIS codes 

single injuries based by anatomic location and relative severity. Participants also rated their chance of dying 

during the index trauma on a scale of 0-10 (0 - “life was not threatened at all”; 10 - “came very close to being 

killed or easily could have been killed”). Participants were classified as experiencing head trauma if the 

individual reported hitting head, and being dazed, confused, or in a fog, or having amnesia for some of the 

event, or loss of consciousness (all individual self-report questions administered in the ED), following criteria 

for minor traumatic brain injury diagnosis according to the American Congress of Rehabilitation Medicine.  

General physical health status of the participant was assessed for the 30 days pre-trauma, with a derived 

normative score based on questions from the 12-Item Short Form Health Survey (SF-12)(Ware Jr, Kosinski, & 

Keller, 1996). The Childhood Trauma Questionnaire (CTQ) was administered 2 weeks post-trauma(Bernstein & 

Fink, 1998). This self-report measure assesses 5 types of childhood maltreatment: emotional abuse, physical 

abuse, sexual abuse, emotional neglect, and physical neglect. The AURORA study used an abbreviated version 

with 11 of the 28 items in the CTQ: 2 items each from the physical neglect, emotional neglect, emotional abuse, 

and physical abuse subtype and 3 items from the sexual abuse subtype. Items were summed to create a CTQ 

total score.  

 

PTSD symptoms were assessed using the PTSD Symptom Checklist for DSM-5 (PCL-5)(Weathers et al., 

2013). The PCL-5 is a 20 item self-report questionnaire assessing the presence and severity of hyperarousal, 

intrusions, negative cognitions, and avoidance symptoms. Each item was rated from 0 (not at all) to 4 

(extremely), and items were summed to create a 0-80 scale. Depression symptoms were assessed using the 

Patient-Reported Outcomes Measurement Information System (PROMIS) Depression instrument (Pilkonis et 

al., 2011) with eight items evaluating depressive symptom frequency scored from 1 (never) to 5 (always). Items 

were summed and converted to a T-score. Dissociation was assessed using the Brief Dissociative Experiences 

Scale – Modified (DES-B)(Carlson & Putnam, 1993). The 8-item DES-B was abbreviated to include 2 items 

reflecting common forms of dissociation. Participants reported how often they had the following experiences: 

People, objects, or the world around you seemed strange or unreal, and You felt as though you were looking 

through a fog so that people and things seemed far away or unclear, on a scale of 1 (none of the time) - 5 (all or 

almost all of the time). The 2 items were summed to create a total dissociative experiences score. Impulsivity 

was assessed using the Impulsive Behavior Scale – Short Form (SUPPS-P; Cyders, Littlefield, Coffey & 

Karyadi, 2014). The 20-item scale was abbreviated to assess 8 items, measuring negative urgency, lack of 

perseverance items, lack of premeditation, and positive urgency, on a scale of 0 (never) to 4 (very often). A total 

SUPPS-P score was calculated by summing the items. Anxiety symptoms were assessed using 4 items from the 

PROMIS Anxiety bank (Pilonkis et al., 2011), assessing anxious feelings, worry, difficulty relaxing, and feeling 

tense, on a scale of 0 (none of the time) to 5 (all or almost all of the time). 

 

Surveys were sent to participants via text or email for self-completion, or were completed with the assistance of 

telephone interviewers based on participant preference. All scales queried symptoms occurring in the past 2 

weeks (2-week survey) or past 30 days (ED, 8-week, 3-month, and 6-month surveys). Missing values were 

imputed using multiple imputation in Hmisc v4.3, with 5 iterations of a 3-knot model, and missing values were 

replaced with values from the final iteration.  N=7 participants missing data at all 4 timepoints were omitted 

from the analysis of mental health outcome trajectories; this appeared independent of subsequent biotyping 

assignments with n=2 each from clusters 1/2/4, and n=1 from cluster 3. 

 

 

 

 



1.2 fMRI data processing and analyses 

 

1.2.1 MRI data conversion and quality control. DICOM images were converted to NIFTI format with Brain 

Imaging Data Structure (BIDS) nomenclature using dcm2niix (Li et al. 2016) and were visually inspected for 

conversion errors and data exclusion criteria (e.g., signal drop-out from Falx calcification, anatomical 

abnormalities). Further quality control was achieved by running the MRIQC pipeline (version  0.10.4 in a 

Docker container) (Esteban et al. 2017a) on the structural and functional images.  

Results included in this manuscript come from preprocessing performed using fMRIPrep 1.2.2 (Esteban, Blair, 

et al. (2017); Esteban, Markiewicz, et al. (2018);  RRID:SCR_016216), which is based on Nipype 1.1.5 

(Gorgolewski et al. (2011); Gorgolewski et al. (2017); RRID:SCR_002502). In order to maintain consistency in 

preprocessing throughout the duration of data collection, FMRIPrep was run in a Docker container retaining the 

version that was newest at the initiation of the study. 

 

1.2.2 Anatomical data preprocessing. The T1-weighted (T1w) images were corrected for intensity non-

uniformity using N4BiasFieldCorrection (Tustison et al. 2010, ANTs 2.2.0), and used as T1w-reference 

throughout the workflow. The T1w-reference was then skull-stripped using antsBrainExtraction.sh (ANTs 

2.2.0), and OASIS as target template. Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, 

RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain mask estimated previously was refined with 

a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the 

cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et al. 2017). Spatial normalization to the ICBM 

152 Nonlinear Asymmetrical template version 2009c (Fonov et al. 2009, RRID:SCR_008796) was performed 

through nonlinear registration with antsRegistration (ANTs 2.2.0, RRID:SCR_004757, Avants et al. 2008), 

using brain-extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal 

fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast 

(FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). 

 

1.2.3 Functional data preprocessing. For each of the 4 BOLD runs found per subject (across all tasks and 

sessions), the following preprocessing was performed. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. The BOLD reference was then co-registered to the 

T1w reference using bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl, 

2009). Co-registration was configured with nine degrees of freedom to account for distortions remaining in the 

BOLD reference. Head-motion parameters with respect to the BOLD reference (transformation matrices, and 

six corresponding rotation and translation parameters) are estimated before any spatiotemporal filtering using 

mcflirt (FSL 5.0.9, Jenkinson et al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 

20160207 (Cox, 1996, RRID:SCR_005927). The BOLD time-series (including slice-timing correction) were 

resampled onto their original, native space by applying a single, composite transform to correct for head-motion 

and susceptibility distortions. These resampled BOLD time-series will be referred to as ‘preprocessed BOLD in 

original space’, or just ‘preprocessed BOLD.’ First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Automatic removal of motion artifacts using independent 

component analysis (ICA-AROMA, Pruim et al. 2015) was performed on the preprocessed BOLD on MNI 

space time-series after removal of non-steady state volumes and spatial smoothing with an isotropic, Gaussian 

kernel of 6mm FWHM (full-width half-maximum). To deal with cases in which motion was likely too high for 

effective ICA-based correction, we also implemented an overall motion threshold was set such that data from a 

particular task (Threat, Inhibition, Reward, Resting State) were excluded from analysis entirely for any 

participant with more than 15% of volumes exceeding 1mm FD.  

 

Although not used in our current analyses, these regressors and corresponding non-denoised and unsmoothed 

images are available for alternative analyses in the future. These noise regressors were generated as follows:The 

BOLD time-series were resampled to MNI152NLin2009cAsym standard space, generating a preprocessed 

BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Several confounding time-series were calculated based on 

the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global signals. FD and 



DVARS are calculated for each functional run, both using their implementations in Nipype (following the 

definitions by Power et al. 2013). The three global signals are extracted within the CSF, the WM, and the 

whole-brain masks. 

 

Additionally, a set of physiological regressors were extracted to allow for component-based noise correction 

(CompCor, Behzadi et al. 2007). Principal components are estimated after high-pass filtering the preprocessed 

BOLD time-series (using a discrete cosine filter with a 128s cut-off) for the two CompCor variants: temporal 

(tCompCor) and anatomical (aCompCor). Six tCompCor components are then calculated from the top 5% 

variable voxels within a mask covering the subcortical regions. This subcortical mask is obtained by heavily 

eroding the brain mask, which ensures it does not include cortical GM regions. For aCompCor, six components 

are calculated within the intersection of the aforementioned mask and the union of CSF and WM masks 

calculated in T1w space, after their projection to the native space of each functional run (using the inverse 

BOLD-to-T1w transformation). The head-motion estimates calculated in the correction step were also placed 

within the corresponding confounds file. The BOLD time-series, were resampled to surfaces on the following 

spaces: fsaverage5. All resamplings can be performed with a single interpolation step by composing all the 

pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction when 

available, and co-registrations to anatomical and template spaces). Gridded (volumetric) resampling was 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the 

smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) resampling was performed using 

`mri_vol2surf`(FreeSurfer). Many internal operations of fMRIPrep use Nilearn 0.4.2 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. 

 

1.2.4 First level models. Initial statistical modeling was conducted in SPM12. For the Threat task, blocks of 

fearful and neutral stimuli were modeled with separate boxcar functions representing the onset and 8000 ms 

duration of each block, convolved with a canonical hemodynamic response function. Contrasts of 

fearful>neutral face blocks were used for ROI extraction. For the Inhibition task, correct Go and correct No-Go 

trials were each modeled in an event-related design (0ms event duration), and incorrect Go and No-Go trials 

were modeled separately. Contrasts of correct No-Go > correct Go trials were used for ROI extraction. For the 

Reward task, gain and loss trials were modeled as separate experimental conditions in an event-related design, 

and any trial on which the participant neglected to make a button press was modeled in an error condition. 

Contrasts of Gain > Loss were used for ROI extraction. In all first-level models, white matter, CSF and global 

signal time courses were included as nuisance regressors, as this has been shown to provide a good balance of 

noise correction from motion/physiological sources while retaining signal quality, after ICA-AROMA 

(Satterthwaite et al., 2019). 

 

1.2.5 Data extraction from regions of interest (ROIs). The mean across all voxels in each ROI was extracted 

from first-level contrasts using rex (https://www.nitrc.org/projects/rex/). ROIs were defined bilaterally, using 

anatomical boundaries. For Threat, ROIs included the amygdala(Tyszka & Pauli, 2016), insula(Tzourio-

Mazoyer et al., 2002), and sgACC and dACC defined as Brodmann Areas 25 and 32 respectively, based on 

translational work showing that these are the primate cortical areas corresponding to regions that inhibit (BA 

25) or express fear (BA 32)(Tang et al., 2019). For Reward, ROIs included the NAcc(Pauli, Nili, & Tyszka, 

2018), OFC(Fischl et al., 2004), and amygdala(Tyszka & Pauli, 2016). For Inhibition, ROIs included the 

hippocampus(Hammers et al., 2003), and a 6mm sphere in vmPFC (centered at x=-4,y=44,z=-4) based on prior 

work with this task defining an area whose activation in the No-Go>Go contrast is correlated with inhibition of 

fear to unreinforced vs reinforced cues(Jovanovic et al., 2013). We did not require that all ROIs show 

significant task-related activation, as some regions with high inter-individual variability may not be 

significantly activated in group-level analyses. 

 

Prior to clustering, fMRI data from each ROI were z-scored to minimize range effects. Outliers were replaced 

with a cap score at M3SD. Scaling and outlier correction were conducted separately for discovery and 

replication cohorts. For the purpose of visualizing the cluster solutions, a principal components analysis (PCA) 

was conducted using factoextra 1.0.5. For the PCA, ROI data from both discovery and replication samples was 

https://www.nitrc.org/projects/rex/


combined to allow the cluster solutions for discovery and replication to be displayed in the same latent variable 

space. Examination of the loadings (Table S1) indicated that the first three PCs corresponded to threat (23% of 

the variance), reward (21%), and inhibition (12%).  

 

1.2.6 Whole-brain analyses. Whole brain analyses were conducted to identify task-related activation for the 

threat, reward, and inhibition tasks. Analyses were corrected for multiple comparisons using an initial voxel-

wise threshold of p<0.005, in combination with an extent threshold for clusters to allow a family-wise error rate 

of less than 5% (pFWE<0.05). The cluster extent thresholds required for this level of correction were k=114 for 

threat, k=82 for reward, and k=116 for inhibition. In addition, after having identified cluster solutions using the 

limited input data from the ROIs, we then conducted whole-brain ANOVAs to identify additional differences 

between cluster groups outside of the a priori ROIs (1 model per task). To meet a FWE-corrected p<.05, the 

initial cluster-forming threshold was again set to p<.005 and the extent thresholds were k=164 for threat, k=146 

for reward, and no clusters meeting FWE-correction for the inhibition task.   

 

 

1.3 Fear-potentiated startle  

 

Fear-potentiated startle data were included to provide more insight into the individual differences seen in each 

of the clusters. Individuals with chronic PTSD show noted differences from trauma-exposed control participants 

during fear learning as well as extinction, including heightened fear to safety cues during fear acquisition, and 

slower extinction (Jovanovic et al., 2009). These features may be apparent in the early aftermath of trauma, 

potentially contributing to the prolonged maintenance of high levels of fear to trauma cues.  

 

Psychophysiological data were collected at the same visit as the fMRI scan 2 weeks posttrauma, using a 

Pavlovian fear conditioning procedure (Glover et al., 2012; Jovanovic et al., 2009). The unconditioned stimulus 

(US) was a 140 psi airblast with a 250ms duration, delivered to the neck. Conditioned stimuli (CS) were colored 

shapes presented on a computer screen; the reinforced CS+ was paired with the US on 100% of the trials, and 

the non-reinforced CS- was never paired with the US. To assess the startle eyeblink response, a 108 dB white 

noise burst was presented during every CS trial, and during noise-alone (NA) trials for the assessment of 

baseline startle response. The startle probe was presented six seconds after CS onset, followed by the US 0.5 s 

later. Conditioning consisted of three blocks of four trials of each type (NA, CS+, CS-). After a 10-minute 

delay, extinction consisted of four blocks with four trials of each type (CS+, CS-, NA) wherein the US never 

occurred. The startle eyeblink response was measured using electromyography of the right orbicularis oculi 

muscle. Fear-potentiated startle was calculated by subtracting the startle magnitude to the noise probe alone 

from the startle magnitude to the CS in each block of the experiment.  
 

The startle eyeblink response was measured using electromyography (EMG) of the right orbicularis oculi 

muscle using a Biopac MP150 (Biopac Systems, Inc., Aero Camino, CA). Two 5 mm Ag/AgCl pre-gelled 

disposable electrodes were placed 1 cm below the participant’s pupil and 1 cm inferior to the lateral canthus. 

Impedances  6 kOhm were accepted, and data was recorded at 1 kHz. Using MindWare software (MindWare 

Technologies, Inc.; Gahanna, OH), EMG signals were amplified by a gain of 2000 and visually inspected for 

artifact. Startle magnitude was defined as the maximal contraction 20 to 200 ms following the startle probe 

presentation. Fear-potentiated startle (FPS) was calculated by subtracting the startle magnitude to the noise 

probe alone from the startle magnitude to the CS in each block of the experiment, for both acquisition and 

extinction.  

 

 

  

  

 
 

 



2. Supplemental Results 

 

2.1 Demographic and pre-trauma characteristics of the four clusters  

Because of the unconstrained clustering approach, key demographic features may differ across the clusters, 

potentially contributing to the cluster solution. There was no association between cluster assignment and age 

(F2,121=0.45, p=.64), gender (2 =0.38, p=.83), race/ethnicity (2 =6.39, p=.38), educational attainment (2 

=23.44, p=.38), employment (2 =5.95, p=.65), income (2 =7.15, p=.71), BMI (F2,121=0.23, p=.80), overall 

physical health prior to the trauma (F2,119=1.39, p=.25), marital status (2 =5.52, p=.70), or childhood trauma 

exposure (F2,121=0.86, p=.43). There was also no association between cluster assignment and features of the 

index trauma such as trauma type (2 =14.36, p=.57), participants’ assessment of chance of dying (F2,121=2.19, 

p=.12), or injury severity (F2,121=1.25, p=.29). There were no differences in head trauma across clusters, 2 = 

1.08, p=.58. There was no relationship with the site of the MRI data collection, 2 =4.59, p=.60, nor aspects of 

data quality for any of the three fMRI scans (ST2). Finally, there were no cluster-wise differences in the 

proportion of participants taking medications, or psychiatric medications specifically (ST5). The clusters 

therefore appear to reflect covert neurocognitive features, rather than demographic, health-related, trauma-

related, or site-specific factors. 

 

 
Table S1. Principal Components Analysis for dataset including Cohort 1 + 2 – factor loadings 

Task ROI PC1 

(0.23) a 

PC2 

(0.21) 

PC3 

(0.12) 

PC4 

(0.11) 

PC5 

(0.09) 

PC6 

(0.08) 

PC7 

(0.06) 

PC8 

(0.06) 

PC9 

(0.04) 

Threat Amygdala 0.35 0.00 0.14 0.31 -0.37 0.29 0.72 -0.09 0.15 
 

Insula 0.54 0.15 0.17 -0.29 0.35 -0.19 -0.02 0.15 0.62 
 

dACC 0.56 0.12 0.05 -0.07 0.20 -0.22 0.09 0.04 -0.75 
 

sgACC 0.44 -0.27 0.11 0.39 -0.17 0.31 -0.65 -0.13 0.04 

Inhibition Hippocampus -0.25 -0.04 0.67 0.49 0.49 -0.09 0.08 -0.01 -0.03 
 

vmPFC -0.06 -0.24 0.66 -0.59 -0.35 0.04 -0.04 -0.12 -0.11 

Reward Nacc -0.03 0.46 0.20 0.24 -0.53 -0.40 -0.18 0.46 0.02 
 

Amygdala -0.06 0.49 0.12 -0.15 0.16 0.75 -0.08 0.34 -0.11 
 

OFC -0.01 0.61 0.06 0.00 -0.05 -0.05 -0.11 -0.78 0.04 
a Component (% variance in the original data accounted for by that component) 

 

Table S2. Analysis of cluster associations with MRI data quality, by fMRI task 

Task FD DVARS TSNR 

Threat F1,121=1.17, p=0.31 F1, 121=0.90, p=0.41 F1, 121=0.33, p=0.72 

Inhibition F1, 121=1.11, p=0.33 F1, 121=0.14, p=0.86 F1, 121=0.31, p=0.73 

Reward F1, 121=0.10, p=0.90 F1, 121=0.10, p=0.90 F1, 121=0.29, p=0.75 

Abbreviations: FD- Framewise displacement, DVARS- Standard deviation in the global signal, TSNR- Temporal signal-

to-noise ratio 

 

Table S3. Model fit (QICCa) for cluster-based versus dimensional fMRI predictors of post-trauma outcome  

Outcome    

PC1/PC2/PC3 

Dimensional model, QIC Cluster-based model, QIC 

PTSD 1.21/0.63/-3.58 127153.83 129606.88 

Depression 0.20/0.70/-1.80 49842.45 50801.76 

Dissociation 0.14/-0.25/-0.65* 1574.94 1564.82 

Anxiety 0.60/-0.10/-0.82 8911.06 9379.86 

Impulsivity 1.21/0.63/-3.58, all n.s. 8680.61 8665.33 
a QICC- Corrected Quasi Likelihood under Independence Model Criterion.  Smaller values indicate better model fit 

* = p<0.05.  



 

Table S4. Whole-brain comparisons of the four groups 

Task Group 

comparison 

Region HEM x y z Z Volume 

(mm3) 

Threat  

(Fearful > Neutral Faces) 

1 > (2, 4) Mid. Cingulate G. L -4 -14 42 6.30 110916 

  
Mid. Cingulate G. R 10 24 36 5.86 

 

  
Supp. Motor Area R 2 14 46 5.45 

 

  
Fusiform G., 

Hypothalamus, Occipital, 

Insula 

R 22 -34 -16 5.86 563436 

  
Rolandic Oper. R 62 -10 12 5.57 

 

  
Sup. Temporal G. L -38 -24 0 5.46 

 

  
Ventral Tegmental Area L -2 -26 -22 5.24 5022 

  
Median Raphe Nucleus R 4 -22 -28 4.25 

 

  
Mesopontine L -10 -20 -28 4.19 

 

  
Cuneus L -14 -78 30 4.47 6210 

  
Cuneus L -12 -70 22 3.31 

 

  
Cuneus L -6 -82 36 3.23 

 

  
Inf. Occipital G. L -50 -68 -12 4.39 6804 

  
Inf. Temporal G. L -54 -58 -6 3.88 

 

  
Inf. Occipital G. L -44 -76 -4 3.75 

 

  
Sup. Occipital G. R 22 -64 48 4.28 8532 

  
Sup. Parietal G. R 32 -64 52 3.70 

 

  
Sup. Occipital G. R 26 -60 40 3.52 

 

  
Caudate L -8 10 16 4.13 8370 

  
Caudate R 4 8 8 4.06 

 

  
Thalamus L -12 -4 4 3.95 

 

  
Sup. Frontal G. L -22 12 62 4.05 7263 

  
Sup. Frontal G. L -20 20 52 3.47 

 

  
Supp. Motor Area L -6 6 60 3.44 

 

  
Sup. Frontal G. L -16 58 30 4.02 4833 

  
Sup. Frontal G. L -4 62 28 3.77 

 

  
Sup. Frontal G. L -30 54 26 3.51 

 

         

 
2 > (1, 4) Parahippocampal G. R 22 -16 -22 4.55 5292 

  
Amygdala R 24 -4 -16 4.16 

 

  
Parahippocampal G. R 16 -6 -20 3.29 

 

  
Rolandic Oper. R 54 -2 6 4.29 9153 

  
Insula R 44 0 -6 3.67 

 

  
Temporal Pole R 60 4 2 3.31 

 

  
Mid. Temporal G. L -42 -14 -16 4.25 7047 

  
Hippocampus L -28 -16 -20 3.50 

 

  
Parahippocampal G. L -18 -12 -24 3.40 

 

  
Supramarginal G. L -58 -38 28 3.68 4428 



  
Sup. Temporal G. L -44 -32 18 3.63 

 

  
Insula L -32 -20 12 3.30 

 

         

 
4 > (1, 2) * No significant clusters 

      

         

Reward  

(Monetary Gain > Loss) 

1 > (2, 4) Caudate R 8 8 -6 5.07 12069 

  
Caudate L -18 24 0 4.03 

 

  
Putamen R 20 4 -8 4.01 

 

  
Ant. Cingulate G. L -6 42 12 4.82 40284 

  
Orbitofrontal G. L -8 40 -10 4.80 

 

  
Ant. Cingulate G. R 14 40 16 4.64 

 

  
Fusiform G. L -34 -26 -18 4.76 3942 

  
Fusiform G. L -34 -40 -22 4.63 

 

  
Fusiform G. L -30 -36 -16 3.17 

 

  
Sup. Temporal G. R 66 -6 6 4.72 25326 

  
Insula R 48 14 -10 4.68 

 

  
Rolandic Oper. R 36 -20 18 4.59 

 

  
Heschl G. L -36 -24 14 4.50 25083 

  
Postcentral G. L -66 -4 26 4.25 

 

  
Postcentral G. L -64 -20 18 4.24 

 

  
Precuneus L -12 -52 46 4.41 10044 

  
Sup. Parietal G. L -20 -60 54 4.34 

 

  
Precuneus L -2 -44 40 3.75 

 

  
Angular G. L -50 -60 24 4.20 8505 

  
Angular G. L -46 -72 42 3.93 

 

  
Angular G. L -52 -70 36 3.58 

 

  
Parahippocampal  R 20 -16 -22 4.15 3942 

  
Parahippocampal  R 12 -22 -26 3.47 

 

  
Hippocampus R 32 -10 -20 3.26 

 

  
Mid. Cingulate G.  --  0 -2 36 3.98 4995 

  
Mid. Cingulate G. R 12 -16 40 3.81 

 

  
Mid. Cingulate G.  --  0 -18 36 3.34 

 

  
Precuneus R 12 -44 60 3.54 4077 

  
Precuneus R 6 -38 56 3.50 

 

  
Paracentral lobule R 14 -40 48 2.88 

 

         

 
2 > (1, 4) * No significant clusters 

      

         

 
4 > (1, 3) * No significant clusters 

      

         

Inhibition (No-Go > Go) No 

differences 

      



across 

groups 

 

 

 Table S5. MRI scan sequence parameters by site 

  
SITE1 

SIEMENS TIM 3T 

TRIO 

(12 CHANNEL HEAD 

COIL) 

SITE2 

SIEMENS TIM 3T 

TRIO 

(12 CHANNEL HEAD 

COIL) 

SITE3 

SIEMENS 

MAGNETOM 

3T PRISMA 

(20 CHANNEL 

HEAD COIL) 

SITE4 

SIEMENS 3T VERIO 

(12 CHANNEL HEAD 

COIL) 

MODALITY 
   

 

T1-

WEIGHTED 

TR = 2530ms, TEs = 

1.74/3.6/5.46/7.32ms, 

TI = 1260ms, flip 

angle = 7, FOV = 

256mm, slices = 176, 

Voxel size = 1mm x 

1mm x 1mm 

TR = 2530ms, TEs = 

1.74/3.6/5.46/7.32ms, 

TI = 1260ms, flip 

angle = 7, FOV = 

256mm, slices = 176, 

Voxel size = 1mm x 

1mm x 1mm 

TR = 2300ms, 

TE = 2.96ms, 

TI = 900ms, 

flip angle = 9, 

FOV = 

256mm, slices 

= 176, Voxel 

size = 1.2mm x 

1.0mm x 

12mm 

TR = 2530ms, TEs = 

1.74/3.65/5.51/7.72ms, 

TI = 1260ms, flip 

angle = 7, FOV = 

256mm, slices = 176, 

Voxel size = 1mm x 

1mm x 1mm 

FUNCTIONAL 

MRI 

TR = 2360ms, TE = 

30ms, flip angle = 70, 

FOV = 212mm, 

slices = 44, Voxel 

size = 3mm x 2.72mm 

x 2.72mm, 0.5 mm 

gap 

TR = 2360ms, TE = 

30ms, flip angle = 70, 

FOV = 212mm, 

slices = 44, Voxel 

size = 3mm x 3mm x 

3mm, 0.5 mm gap 

TR = 2360ms, 

TE = 29ms, 

flip angle = 70, 

FOV = 

212mm, slices 

= 44, Voxel 

size = 3mm x 

2.72mm x 

2.72mm, 0.5 

mm gap 

TR = 2360ms, TE = 

30ms, flip angle = 70, 

FOV = 212mm, slices 

= 42, Voxel size = 

3mm x 2.72mm x 

2.72mm, 0.5 mm gap 

  



Table S6. Medications taken at any point post-trauma, by cluster (N) 

Medication type Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total 

Acetaminophen 1 4 0 1 6 

ACE Inhibitors 3 3 2 0 8 

Antibiotics 1 2 1 2 6 

Anticholinergics 1 7 0 2 10 

Benzodiazepines 0 3 1 1 5 

Beta blockers 0 2 0 0 2 

Contraceptives 1 1 0 1 3 

Non-steroidal anti-inflammatory 6 11 3 5 25 

Opioids 2 2 0 4 8 

Serotonin and norepinephrine reuptake inhibitors  1 1 1 1 4 

Serotonin reuptake inhibitors  1 5 0 3 9 

Any medication 

2 =0.62, p=0.89 with Cluster 3 

2 =0.41, p=0.81 without Cluster 3 10 21 6 11 48 

Any psychoactive medication 

2 =2.40, p=0.49 with Cluster 3 

2 =1.72, p=0.42 without Cluster 3 4 9 2 7 22 

 

  



Figure S1 Cluster number metrics for fMRI data collected 2 weeks post-trauma, for the discovery sample (a-b) and 

replication sample (c-d).    

(a,b) Weighted sum of squares for within-cluster point distances across a range of cluster solutions. The optimal solution 

following Hartigan’s distance index is denoted with dotted line. (c,d) Silhouette width for a range of cluster solutions after 

hierarchical clustering using Wilk’s criterion. Width summarizes the distance of points within a cluster relative to points 

outside the cluster. Dotted line indicates maximum silhouette width. 

 

 
  



Figure S2 Amygdala reactivity to threat after traumas producing different levels of injury severity. Greater injury 

severity was linked with greater amygdala reactivity to threat, F1,144=4.58, p=0.03. 

 

 
 

 

 

 

 

 

 

 

 

 

  



Figure S3. Sitewise differences in quality assurance metrics. Differences in framewise displacement (FD), standard 

deviation in the global signal (DVARs), and temporal signal-to-noise ratio (TSNR) were calculated between each 

neuroimaging site. Black bars reflect the mean value of each metric per site, and dots illustrate each participant of the 

combined n=146 (discovery + replication cohorts). 
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