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UK Biobank 

Participants, study design and exclusion criteria 

UK Biobank (UKB) is a large-scale, population-based, biomedical, epidemiological 

study comprising around 500,000 predominantly neurotypical (NT) participants. A 

subset among these has contributed brain imaging data (1). Three dedicated 

imaging centres are equipped with identical scanner models (3T Siemens Skyra, 

software VD13) for brain imaging scanning using the standard Siemens 32-channel 

receive head coil. For details on the brain MRI protocols, see Table 1 in Alfaro-

Almagro et al., 2018 (2). In this study, we used the T1-weigthed anatomical MR data 

from 14,503 individuals (mean age 52.7 years, standard deviation 7.5 years, range 

44-80 years), of which 12,949 were used for training, 518 for validation and 1,036 for 

testing. The image preprocessing pipeline and automated quality control steps are 

described in detail in (2). We used data as preprocessed already (by our laboratory 

on behalf of UK Biobank), and as available to all researchers who have been granted 

access to UKB data. The input data to the deep neural network model was brain-

extracted, bias-corrected and registered to MNI152 standard space using affine 

registration as implemented by FSL-FIRST (3).  

 

ABIDE 

Participants, study design and exclusion criteria 

We combined the Autism Brain Imaging Data Exchange (ABIDE) repositories I (4) 

(http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html)  and II (5) 

(http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html) for analysis. Sites with 

same/highly similar imaging acquisition protocols (as outlined and recommended on 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
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the website) were merged across ABIDE I and ABIDE II into one single site (KKI and 

ABIDEII-KKI; NYU and ABIDEII-NYU; SDSU and ABIDEII-SDSU; UCLA_1 and 

ABIDEII-UCLA_1). Sites providing less than four individuals (referred to as an 

individual’s imaging data) per sex/diagnostic group were excluded (namely, ABIDEII-

BNI_1, ABIDEII-ETH_1, ABIDEII-OILH_2, ABIDEII-SU_2, ABIDEII-TCD_1, ABIDEII-

USM_1, ABIDEII-U_MIA_1, CMU, LEUVEN_1, LEUVEN_2, MAX_MUN, OHSU, 

OLIN, SBL, TRINITY, UCLA_2, UM_2, and USM). Detailed information on imaging 

acquisition parameters can be found on the above websites. Further, we excluded 

participants with (clinically non-significant) brain atypicalities (N=2), excessive head 

motion (N=99) and corrupted image quality (N=3). 

For the autism datasets, autism diagnosis was determined by clinician’s 

consensus supported by either one or both ‘gold-standard’ diagnostic instruments, 

i.e., an Autism Diagnostic Observation Schedule (ADOS (6)) and/or the Autism 

Diagnostic Interview-Revised, (ADI-R (7)) in all sites but two (UCD and Stanford 

sites only used diagnostic cut-offs of ADOS and/or ADI-R for inclusion). This 

selection process resulted in a total of 1,412 individuals including 115 autistic 

females, 526 autistic males, 239 NT females, and 532 NT males between 5 and 56 

years of age across 15 sites. Individuals were matched for age across and for FIQ 

within diagnostic groups. For further details, see Table S1.  

 

EU-AIMS LEAP 

Participants, study design and exclusion criteria 

All participants with autism had an existing clinical diagnosis of autism according to 

DSM-IV (8), DSM-IV-TR (9), DSM-5 (10) or ICD-10 (11) criteria. Participants 

underwent comprehensive clinical, cognitive and MRI assessment at one of six 
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collaborating sites: the Institute of Psychiatry, Psychology and Neuroscience, King’s 

College London (KCL), London, United Kingdom; the Autism Research Centre at the 

University of Cambridge, Cambridge, United Kingdom; Radboud University Nijmegen 

Medical Centre, Nijmegen, the Netherlands; University Medical Centre Utrecht, 

Utrecht, the Netherlands; Central Institute of Mental Health, Mannheim, Germany; 

and University Campus Bio-Medico, Rome, Italy. Exclusion criteria included the 

presence of any MRI contraindications (e.g., metal implants, braces, claustrophobia) 

or failure to give informed written consent to MRI scanning, as well as significant 

hearing or visual impairments not corrected by glasses or hearing aids. In addition, 

we excluded participants with missing T1-weighted MRI scans, clinically non-

significant brain atypicalities (N= 21), and excessive head motion (N=29). The study 

was approved by the local ethical committees of participating centers, and written 

informed consent was obtained from all participants or their legal guardians (for 

participants<18 years). The final sample comprised 395 autistic individuals (286 

males and 109 females), and 286 neurotypical controls (188 males and 98 females) 

between 6 and 30 years of age. Individuals were matched for age across and for FIQ 

within diagnostic groups. For details see Table 1 and Figure S1A. 

 

Clinical, cognitive and demographic measures 

Intellectual functioning 

General intellectual abilities were assessed using the Wechsler Abbreviated 

Scales of Intelligence-Second Edition (WASI-II (12)), or if unavailable, 

the Wechsler Intelligence Scale for Children-III/IV (WISC-III/IV (13, 14)) for children 

or Wechsler Adult Intelligence Scale for Adults-III/IV (WAIS-III/IV (15, 16)) for adults. 

https://www.sciencedirect.com/topics/neuroscience/neurosciences
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Standardized estimates of verbal IQ (VIQ), performance IQ (PIQ), and full-scale IQ 

(FIQ) were derived using IQ norms with mean=100 and SD=15. 

 

Autism-associated, clinical features 

The Autism Diagnostic Observation Schedule (ADOS-G (6)) was used to 

measure current, clinically observed core symptoms of autism. Based on the 

updated algorithm totals (17, 18), we report Calibrated Severity Score (CSS) for 

‘Social Affect’ indexing social-communication difficulties and ‘RRBs’ indexing 

restricted and repetitive behaviours. CSS Total serves as an overall indicator of 

autism severity. The CSS ranges from 1 to 10, with higher scores indicating more 

substantial autism symptom severity.  

 

The Autism Diagnostic Interview-Revised (ADI-R (7)) is a semi-structured 

caregiver interview completed by parents or caregivers. Algorithm scores were 

derived from current and historical symptom information for the domains of 

Reciprocal Social Interaction, Communication, and Restricted, Repetitive and 

Stereotyped Behaviours and Interests.  

 

The Social Responsiveness Scale, Second Edition (SRS‐2 (19)) is a quantitative 

measure of autistic traits and is composed of 65 items asking about characteristic 

autistic behaviour over the previous six months. The total raw score is transformed 

into sex-specific T scores. Parent report was used for all autistic participants and 

autistic adults additionally completed the self-report form. 
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The Repetitive Behaviour Scale‐Revised (RBS‐R (20)), composed of 43 items, was 

used to derive parent‐reported total raw scores for restricted and repetitive 

behaviours, with higher scores indicating a greater level of atypical behaviours.  

 

Sensory processing atypicalities were assessed using the Short Sensory 

Profile (SSP (21)) across 38 items, from which a total raw score was obtained (lower 

scores indicate more atypicality) that reflect dysfunction across multiple sensory 

domains. 

 

Adaptive behaviour was assessed with semi-structured parent/caregiver interviews 

using the Vineland Adaptive Behaviour Scale-Second Edition (22). This measures 

a person’s current level of functioning across three domains: communication 

(expressive, receptive, and written), daily living skills (community, domestic, and 

personal), and socialization (coping skills, interpersonal relationships, and play and 

leisure time). For each domain, standard scores were obtained and combined to 

generate an Adaptive Behavior Composite (ABC) score. Standard scores have a 

mean of 100 (SD=15), with lower scores indicating greater functional impairment. 

 

Co-occurring conditions (ADHD) 

Attention-deficit/hyperactivity disorder (ADHD) symptoms were assessed with 

the DSM-5 ADHD rating scale, covering both inattention and hyper-

activity/impulsivity symptoms based on either self- or parent-report (23). Self-report 

scores were only used when parent-report scores were unavailable (N=83). A 

categorical variable was computed based on the DSM-5 criteria (i.e., at least five 

positive responses in children and six in adults on either or both scales). 
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Sex-differential cognitive measures 

The Autism Spectrum Quotient (AQ (24)) is a self- or parent-reported 

questionnaire that aims to quantify autistic traits. Depending on their age (adults 18-

30, adolescents 12-17, children 6-11) and ability level, participants received either an 

adult (50 items), adolescent (50 items) or child (50 items) version of the test. Before 

merging the three different versions across all individuals, each version was z-

standardized within each diagnostic group and age schedule separately. 

 

The Empathy Quotient (EQ) was used to measure a cognitive style described as 

the drive to identify a person's thoughts and feelings and to respond to these with an 

appropriate emotion. The Systemizing Quotient (SQ) was used to measure a 

cognitive style characterised by the motivation to predict lawful events (using if-then 

rules) and observations of input-operation-output relationships and includes good 

attention to detail. For both, age-appropriate versions were used for children (25), 

adolescents (26) and adults (27, 28). Before merging the three different versions 

across all individuals, each version was z-standardized within each diagnostic group 

and age schedule separately. 

 

The Reading the Mind in the Eyes test (29) asks participants to identify complex 

emotions and mental states based only on the eye region of a face. Depending on 

their age (adults 18-30, adolescents 12-17, children 6-11) and ability level, 

participants received either an adult (36 items), adolescent (31 items) or child (28 

items) version of the test. Percentage of correct answers was used as the outcome 

variable. Before merging the three different versions across all individuals, each 
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version was z-standardized within each diagnostic group and age schedule 

separately. 

 

Other cognitive measures (selected post-hoc) 

Social and monetary reward task 

Participants performed a social and monetary incentive delay task within the MRI 

scanner. Participants were asked to give a speeded response (button press) to a 

visual target screen flash. For all detail on this task, refer to (30). Behavioural 

performance on the two tasks was extracted as separate accuracies (i.e., 

percentage of successful trials) and used as independent variables for our analyses. 

 

Emotional face matching task (Hariri) 

Participants completed a well-established face matching task (31) within the MRI 

scanner, with alternating blocks of faces (showing angry and fearful emotions) and 

control conditions. In the emotional face condition, a target face has to be matched 

to one of two probes (identity match) by pressing the left or right button of a 

response device. Analogously, in the control condition, participants are asked to 

match a target shape (circle or ellipses) to two test shapes. Behavioural performance 

on the task was extracted as the accuracy on performing the task (i.e., percentage of 

successful trials) and used as independent variable for our analyses. 

 

Karolinska Directed Emotional Faces task 

The Karolinska Directed Emotional Faces (KDEF) task (32, 33) tests for recognition 

of basic emotions. Participants were administered an adapted version with 70 trials 

(34) reduced from the original 140 trials, to reduce assessment time. In each trial, 
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participants were shown a photograph of a person’s face and asked to select which 

of seven words (happy, sad, angry, surprised, afraid, disgusted, or neutral) best 

describes the expression displayed. Behavioural performance was defined as the 

accuracy on the task.  

 

MRI data acquisition 

MRI data were acquired on 3T scanners: General Electric MR750 (GE Medical 

Systems, Milwaukee, WI, USA) at Institute of Psychiatry, Psychology and 

Neuroscience, King’s College London, United Kingdom (KCL); Siemens Magnetom 

Skyra (Siemens, Erlangen, Germany) at Radboud University Nijmegen Medical 

Centre, the Netherlands (RUNMC); Siemens Magnetom Verio (Siemens, Erlangen, 

Germany) at Autism Research Centre at the University of Cambridge, United 

Kingdom (UCAM); Philips 3T Achieva (Philips Healthcare Systems, Best, The 

Netherlands) at University Medical Centre Utrecht, the Netherlands (UMCU); GE 

Medical Systems Signa HDxTt at the Rome University; and Siemens Magnetom Trio 

(Siemens, Erlangen, Germany) at Central Institute of Mental Health, Mannheim, 

Germany (CIMH). Procedures were undertaken to optimize the MRI sequences for 

the best scanner-specific options, and phantoms and travelling heads were 

employed to assure standardization and quality assurance of the multi-site image-

acquisition. Structural images were obtained using a 5.5-minute MPRAGE sequence 

(TR=2300ms, TE=2.93ms, T1=900ms, voxels size=1.1x1.1x1.2mm, flip angle=9°, 

matrix size=256x256, FOV=270mm, 176 slices). For further details see Table S3. 

 



 11 

Preprocessing 

For imaging and data acquisition parameters in UKB see (2), in ABIDE see 

http://fcon_1000.projects.nitrc.org/indi/abide/ and in LEAP see Table S3. The UKB 

MRI data have been preprocessed using a standard processing pipeline specified in 

(2). We used the brain-extracted, bias-corrected and linearly registered (12 degree-

of-freedom; to MNI152 standard space) input images to train the convolutional neural 

network (CNN) / Simple Fully Convolutional Network (SFCN). For ABIDE, LEAP and 

the ADHD samples, structural T1-weighted images were preprocessed using a 

standard preprocessing pipeline that included tools from the FMRIB Software Library 

(FSL version 5.0.6 and 6.0; http://www.fmrib.ox.ac.uk/fsl). After brain extraction using 

FSL BET (35) and bias-correction, T1-weighted images of each participant were 

linearly registered to MNI152 standard space using 12-parameter affine 

transformation. Importantly, brain volumes of all individuals were normalized in this 

linear registration step.  

 

Sex-Classification  

Simple Fully Convolutional Network (SFCN) 

We used a previously validated (36) convolutional neural network (CNN) architecture 

to estimate biological sex based on the preprocessed imaging data. This architecture 

is based on VGGNet (37) using a fully convolutional structure (38). As previously 

reported (36) we keep the number of layers to a minimum which significantly reduces 

the number of parameters to 3 million and consequently also the computational 

complexity and memory cost. This lightweight deep learning model is referred to as 

Simple Fully Convolutional Network (SFCN). 

http://www.fmrib.ox.ac.uk/fsl
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The model consists of seven blocks, as shown in Figure S2. Each of the first 

five blocks contains a 3-by-3-by-3 3D convolutional layer, a batch normalisation layer 

(39), a max pooling layer and a ReLU activation layer (40). The 1mm-input-resolution 

160 × 192 × 160 3D input image (with little or no brain tissue loss) goes through 

each block sequentially, with its feature map generated and spatial dimension 

reduced to 5 × 6 × 5 after the fifth block. The sixth block contains a 1 × 1 × 1 3D 

convolutional layer, a batch normalisation layer and a ReLU activation layer. The 

seventh block contains an average pooling layer, a dropout layer (only used for 

training, with 50% random dropout rate) (41), a fully connected layer and a softmax 

output layer. The channel numbers used in each convolution layer are [32, 64, 64, 

64, 64, 64, 2]. Reproducible code can be found at https://github.com/ha-ha-ha-

han/UKBiobank_deep_pretrain. 

 

Pre-training in UKB 

We pre-trained four CNN models in UKB for sex-classification using the brain-

extracted, bias-corrected and linearly registered T1-weighted images as input 

(Figure S2). The use of such whole brain anatomical data instead of artificial features 

has been shown in our previous study to have comparable predictive performance 

across different modalities when using our deep learning model (see Table 5 in (36)). 

Next, the 14,503 individual brains used for training and validation were randomly 

divided into four folds for cross-validation, resulting in four CNN models. Each fold 

contained about one fourth of individuals for testing, and 518 individuals for 

validation, with remaining individuals used for training. For detailed description of this 

previously applied training protocol, see (36). All analyses were implemented using 

https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain
https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain


 13 

Python and PyTorch (42). Final results revealed a sex prediction accuracy of 

p=99.5% in UKB (36). 

 

Transfer-learning and validation in ABIDE 

Transfer-learning is widely used in medical image analysis given its utility in real 

world settings where it is expensive or impossible to recollect training data. It does 

not require the training and test data to be in the same feature space and to have the 

same distributions. For 2D images, it is common to transfer the models trained with 

natural images (ImageNet) to medical image datasets (43, 44) to improve the model 

performance. Similarly, for the 3D MR images, we can use the model pre-trained in a 

large cohort, and then transfer to smaller samples with different population 

distribution and different scanner setup, while retaining good predictive performance. 

Here, we applied transfer learning (45, 46) to transfer the deep learning models 

trained in UKB to NT individuals in ABIDE. Thus, here, we used the model pre-

trained in a large cohort (UKB) and transferred it to a smaller sample (ABIDE) with 

different distributions (such as age and site) while retaining good predictive 

performance (44, 45). 

 

Balanced samples across sex, diagnosis and site 

To use the data in the most unbiased way for sex-classification in ABIDE (and LEAP/ 

the ADHD sample further on), we randomly sampled the cohort 100 times for training 

and validation using the following protocol to get balanced numbers of individuals in 

each diagnostic (ASC/NT) and sex group (M/F) across all sites: (1) sex matching 

within each site: we sampled the same number of males and females within NTs, 
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and the same number of autistic males and females; (2) selecting training and 

validation set within each sex group: if the selected number (N) of NTs was more 

than twice the number of autistic individuals, then we used all of the autistic 

individuals for validation (N ASC), and the same number of NTs for testing (N ASC), 

while the remaining N of NTs for training (N NT – N ASC); if the selected number of 

NTs was less than twice the number of autistic individuals, then we used half of the 

number of NTs for training (N ASC), the remaining half of NTs for validation (N NT – 

N ASC), and the same number of autistic individuals for validation (see Table S4). 

 

Sex predictions in ABIDE 

After this individual sampling, the SFCN models were initialized with the UKB-pre-

trained weights (each initialization is shared by 25 models), and next, stochastic 

gradient descend was used to optimize a loss function of cross-entropy for sex-

classification. The learning rate was initially 1e-4 and then decayed by a factor of 10 

for every 15 epochs (during one epoch, every training individual is seen once by the 

model), and the final model was obtained after 50 epochs. The trained model was 

then used to predict sex for the validation set. For each of the 100 models, the sex-

classification accuracy was computed for each sex and diagnostic group (i.e., ASC-

M, ASC-F, NT-M, NT-F; for details see below).  

 

Comparing sex prediction accuracies across diagnostic/sex groups 

Since we were interested in sex-specific accuracy differences in autism that differ 

from the reference (NTs), we took the median sex prediction probability (i.e., 

predictive confidence) of the NT individuals as the sex-classification threshold (i.e., 
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the median of the balanced neurotypical sample as baseline reference). Specifically, 

this means that all 100 individual-level predictions were compared against a sex-

classification threshold defined by the median prediction probability across NT males 

and females. An individual-level prediction probability value greater than the median 

of NT males and females was classified as ‘male’ vs. a value smaller than the 

median of the NT males and females was classified as ‘female’. This result was than 

compared against the real biological sex of each individual and summarized in a 

Boolean value (True=1 or False=0). The true positive rate (i.e., correctly classified 

ASC-M) was computed by adding up the true positive values and dividing them by 

true positive + false negative values, while the true negative rate (i.e., correctly 

classified ASC-F) was computed by adding up the true negative values and dividing 

them by true negative + false positive values. Resulting sensitivity and specificity are 

referred to as sex prediction accuracies within each diagnostic/sex group (ASC-M, 

ASC-F and NTs). This also implies that the sex prediction accuracy of female and 

male individuals (used as reference) was the same within the NT cohort. In other 

words, the true positive rate (in NT-M) and the true negative rate (in NT-F) was the 

same as the balanced accuracy in NT. Finally, in order to compute differences in the 

group-level sex prediction accuracies across diagnostic/sex groups, we compared 

the sex prediction accuracy within each balanced (described above) diagnostic and 

sex group (i.e., ASC-F vs. ASC-M, ASC-F vs. NT(-F) and ASC-M vs. NT(-M)) with 

one-sample t tests and associated Cohen’s d.  

Sex predictions in LEAP and ADHD 

After getting the 100 fine-tuned models from ABIDE, we applied the models to every 

individual in LEAP. The median value of the 100 predictions for every individual was 
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used to form a final individual-level ensemble-prediction. Again, in order to use the 

balanced neurotypical sample as baseline reference, the prediction threshold was 

set to the median prediction probability derived from NT males and NT females. We 

thus compared the sex prediction accuracy within each diagnostic and sex balanced 

group, namely, ASC-F vs. ASC-M, ASC-F vs. NT(-F) and ASC-M vs. NT(-M).  

The same procedure was next applied to the ADHD sample (see Figure S1D 

and S1F and Table S4). To ensure comparability, we also computed classification 

accuracies across autistic individuals from LEAP with and without a co-occurring 

diagnosis of ADHD.  

 

Region-Aligned Prediction (RAP) 

To identify the most predictive and biologically meaningful features that drive our 

prediction at the brain level, here we employ a novel model interrogation approach – 

Region-Aligned Prediction (RAP (47)). This method generates spatially resolved 

estimates of sex prediction accuracy and predicts labels at the brain region level. 

Specifically, RAP aligns the intermediate feature maps (mp4 in this case, 

corresponding to the 4th layer of the SFCN) across all individuals in the dataset 

(including both the training and validation sets), and extracts the feature matrix at 

one spatial location at a time for all individuals. Note that we do not refer to voxels 

but spatial locations here, because the node at each location can ‘see’ multiple 

neighboring voxels in the original space due to the proceeding convolutional 

operations. These spatial locations are arranged in a 3D lattice just as the original 

voxels, but with lower spatial resolution. Next, a logistic regression model (an L2-

regularized multiple regression model) is trained using the training set feature matrix 

and applied to the validation set to predict sex. This process is repeated 
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independently for every spatial location of the intermediate layer, resulting in 

predictions (i.e., RAP) at every spatial location for every individual. Given that the 

original CNN was trained 100 times, this generated 100 predictions for every 

individual. We applied the 100 models in the LEAP dataset, and then generated 100 

predictions for every individual, as well as the corresponding RAP maps (spatial 

prediction for maleness probability). For each spatial location of an individual, we 

used the median prediction from the 100 RAP maps to generate the ensemble 

prediction. Here, each spatial location in each person’s RAP map consists of 

probabilistic values between 0 and 1 (where 0 means ‘least likely male’ and 1 means 

‘most likely male’). Next, t-maps were computed based on the contrasts NT-M vs. 

NT-F, ASC-F vs. NT-F and ASC-M vs NT-M. Here, positive t statistics imply a higher 

male probability in both ASC-M and ASC-F. Thus, thresholding these maps will yield 

regions with highest male probability and thus most informative for the prediction.  

The RAP generation steps for LEAP dataset are summarized as follows: 

1. Every spatial location of each individual gets 100 predictions for the 

maleness probability. 

2. The 100 predictions are summarized with the median value. 

3. The process is repeated for all 681 individuals and every 

individual receives a median-RAP map. 

 

Associations with autism-associated, clinical features  

To assess the clinical relevance of our findings, we followed results up in autistic 

individuals (males and females separately) within the deeply phenotyped LEAP 

sample. We ran two general linear models (GLMs) for autistic males and females 

separately, with core clinical and cognitive measures associated with autism as 
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independent variables while accounting for age and site. These core clinical and 

cognitive measures included: ADOS (CSS, CSS-SA, CSS-RRB), ADI-R (reciprocal 

social interaction, communication, RRB), SRS-2, RBS-R, SSP, Vineland Adaptive 

Behaviour Composite (ABC) Score and three subscales (communication, daily living 

skills, socialization). We predicted more autistic symptoms and cognitive difficulties 

with higher male prediction probability and thus computed one-tailed p-values. All 

results were FDR-corrected. Results revealed no significant associations.  

 

Associations with sex-differential, cognitive measures 

To assess the relationship with sex-differential cognitive features, we followed results 

up in autistic individuals (males and females separately) within the deeply 

phenotyped LEAP sample. We ran two GLMs for autistic males and females 

separately, with sex-differential, cognitive features as independent variables while 

accounting for age and site. These sex-differential, cognitive features included: the 

Reading the Mind in the Eyes Test (RMET), Autism Quotient (AQ), Empathy 

Quotient (EQ), and Systemizing Quotient (SQ). We predicted more male-typical 

scores (i.e., higher scores on the AQ and SQ, while lower scores on the RMET and 

EQ) with higher male prediction probability and thus computed one-tailed p-values. 

All results were FDR-corrected. These analyses yielded a nominally significant 

relationships between higher male sex prediction values with higher scores on the 

AQ in ASC-M (t=2.05, p=0.02, q=0.08), while a significant relationship with lower 

performance on the RMET test in ASC-F (t=-2.36, p=0.01, q=0.04, Figure S3A).  

We further tested whether a shift towards maleness was also associated with 

more sex-differential cognitive measures in neurotypical individuals. We ran two 

GLMs – one in NT males and one in NT females separately with sex prediction 



 19 

values as dependent variables and age and site as covariates. We predicted that 

higher sex prediction probability values towards maleness would be associated with 

higher AQ and SQ scores, and lower EQ scores or lower accuracy on the RMET. We 

found no significant associations between greater predictive male probability and any 

of the cognitive measures in NT. 

 

Cognitive decoding 

We further investigated two specific RAP-imaging-t-maps (ASC-F vs. NT-F and 

ASC-M vs. NT-M) focussing on regions with positive t values (as these represented 

where ASC-M and ASC-F showed higher male prediction probabilities). To explore 

the cognitive domains implicated in these, we used the Neurosynth Image Decoder 

(http://neurosynth.org/decode/; accessed on January 23rd 2021) to visualize the top 

100 terms most strongly associated with the two RAP-imaging-t-maps.  

After excluding anatomical (e.g., fusiform gyrus) and redundant terms (e.g., object 

and objects), we visualized the remaining terms showing correlations with the 

imaging maps between r=0.2–0.06.  

Results showed that the most common cognitive terms associated with the 

female RAP-t-maps were primarily related to face perception, visual processing and 

speech (Figure 2D), whereas in males to motor and reward processing (Figure 2E). 

Based on these results we tested the association between the RAP-based sex 

prediction values (extracted from clusters with highest male prediction probabilities) 

and a) cognitive measures associated with motor and reward processes in males 

(i.e., ADI-R RRB, ADOS-2 CSS-RRB, RBS-R, measures of accuracy on monetary 

and social reward tasks) and b) cognitive measures related to face and 

communication in females (i.e., emotional face processing tasks [KDEF & Hariri], 

http://neurosynth.org/decode/
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ADI-R communication and communicative adaptive functioning). Next, in order to 

validate the specificity of RAP images relative to behavioural data, we cluster-

corrected these two RAP-imaging-maps (Gaussian random field theory, voxel-level 

Z=2.3, cluster-forming p=0.05) to identify ROIs with highest male prediction 

probabilities in ASC-M and ASC-F. These were then binarized and used as masks 

(one male-specific and one female-specific mask) to extract the average RAP-values 

for each male/female autistic individual. These ROI-specific values were then 

submitted to two GLMs in autistic males and females separately to test the 

association between the RAP-based sex prediction values within the clusters with 

the highest male prediction probabilities and with different cognitive measures 

related to the cognitive domains identified in the previously described cognitive 

decoding analyses. Results were FDR-corrected. While we found no relationships in 

ASC-M, in ASC-F there was a significant association between predicted maleness 

and lower accuracy on the Karolinska Directed Emotional Faces task (t=-2.6, p=0.01, 

q=0.02) (Figure S3B). 

 

ADHD sample 

To assess specificity of results with regards to autism, we selected an independent 

sample of individuals with attention-deficit/hyper-activity disorder (ADHD) and NT 

individuals. For this we combined the publicly available ADHD200 (48) (excluding the 

NeuroImage site collection) and the local NeuroImage (49) sample from Nijmegen 

and Utrecht (as the local sample is larger in size than the Nijmegen-NeuroImage 

sample, which is part of ADHD200). Given that the NeuroImage study is a sibling 

designed cohort, there were pairs of siblings who were either both control individuals 

or both individuals with a diagnosis of ADHD. We thus created a custom-code that 



 21 

randomly excluded one of the two sibling pairs, retaining only one member of the 

family (in both the control and ADHD category). Acquisition sites that provided less 

than four individuals (referred to as an individual’s imaging data) per sex/diagnostic 

group were excluded (in this case two sites, namely, University of Pittsburgh and 

Washington University in St. Louis from ADHD200). We further excluded participants 

with (clinically non-significant) reported atypicalities in the structural MRI data (N=7) 

and excessive head motion or corrupted image quality (N=54). This resulted in a 

sample of 370 males with ADHD, 134 females with ADHD, 246 NT males and 220 

NT females across six sites in total. 

To account for a significant difference in age (F=1.7, p<0.001) between males 

and females with ADHD (mean age females=13.3, mean age males=14.2) and NT 

males and females (mean age females=12.5, mean age males=12.2), we used both 

auto-age matching implemented in our code (as described below) and we also 

manually matched individuals on age (mean age females with ADHD=13, mean age 

males with ADHD=13.3, mean age NT females=12.8, mean age NT males=12.6; 

F=1.97, p=0.12; after excluding 4 females with ADHD, 46 males with ADHD, 13 NT 

females, 21 NT males). This resulted in a final sample of 324 males with ADHD, 130 

females with ADHD, 225 NT males and 208 NT females across six sites in total. 

Individuals were matched for age across sex/diagnostic groups and for FIQ within 

diagnostic groups (i.e., ADHD-M matched with ADHD-F; and NT-M matched with 

NT-F). For details, see Table S2. 

 

Sex prediction analyses in the ADHD sample 

We applied the 100 fine-tuned models from ABIDE to the combined ADHD200 - 

Neuroimage sample the same way as described in the method sections in relation to 



 22 

the LEAP sample. More specifically, the models were applied to every individual in 

the ADHD testing dataset. Given the age distribution of the sample, we did not want 

results to be biased by older males and females with ADHD. Thus, we ran analyses 

in two samples: a) in the manually age-matched sample (as described above) and b) 

in a sample that was auto age-matched within the code when creating the sex- and 

clinically-balanced samples for testing. Figure S1D shows the resulting age 

distributions for the sex- and clinically-balanced sample when doing manual age-

matching and Figure S1F shows the resulting age distributions for the sex- and 

clinically-balanced sample when doing auto age-matching within the code. 

 

Manual age-matching (before the model application) 

Results revealed that females with ADHD (72%) had similar sex prediction 

accuracies as males with ADHD (73%) (Cohen’s d=0.1, p=0.3), and slightly reduced 

compared to NT individuals (73%) (d=0.24, p=0.02), however this did not survive 

Bonferroni correction (p=0.05/3=0.017). Males with ADHD showed no differences in 

sex prediction accuracy from NT (d=0.05, p=0.6) (Figure S4A and Table S5A). 

 

Auto age-matching (within the model application) 

Results revealed that females with ADHD (72%) had similar sex prediction 

accuracies as males with ADHD (71%) (Cohen’s d=0.14, p=0.2) and as NT (73%) 

(d=0.19, p=0.05). Males with ADHD showed slightly reduced sex prediction 

accuracies compared to NT (d=0.41, p=1.0e-04) (Figure S4B and Table S5B).
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Comparison of autistic individuals with and without 

ADHD 

 

To compare results in the LEAP sample with the ADHD sample results, we also 

computed classification accuracies across individuals with autism with and without a 

co-occurring diagnosis of ADHD (ADHD+ vs. ADHD-). Autistic individuals were sub-

grouped based on DSM-5 criteria as specified above. This resulted in a sample of 

120 autistic males with ADHD, 119 autistic males without ADHD (47 autistic males 

had missing values on the ADHD measure), 39 autistic females with ADHD and 61 

autistic females without ADHD (9 autistic females had missing values on the ADHD 

measure). Note that 13 NT males and 11 NT females also scored above threshold 

on the ADHD rating scale, were however not excluded from analyses for consistency 

reasons. For accuracy comparisons between each diagnostic and sex group, the 

same number of individuals was sampled for each model, i.e., the smallest available 

number in a certain group, which was 39 (ASC-F) in this case. 

Results revealed that the previously reported pattern was present across both 

autistic males and females with and without a co-occurring diagnosis of ADHD 

(Table S6). We found that the sex prediction accuracy in autistic females with ADHD 

(71%) was on average lower than that in autistic males with ADHD (87%) (Cohen’s 

d=1, p=1.4-e16) and less than that in NT (80%) (d=-0.72, p=1.5e-10). For the male 

individuals, sex prediction accuracy in autistic males with ADHD was on average 

better than in NT (d=0.71, p=2.1e-10) (Figure S5A). Sex prediction accuracy in 

autistic females without ADHD (75%) was on average less than that in autistic males 

without ADHD (86%) (d=-0.73, p=9.8-e11) and that in NT individuals (d=-0.45, 
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p=1.9-e05). For the male individuals, performance in autistic males without ADHD 

was on average better than that in NT individuals (d=-0.64, p=6.9-e09) (Figure S5B). 

Autistic males with ADHD did not differ from autistic males without ADHD (d=-0.03, 

p=0.79), whereas autistic females with ADHD had slightly lower sex prediction 

accuracies than autistic females without ADHD (d=-0.02, p=0.03) (however not 

surviving Bonferroni correction p=0.05/2=0.025) (Figure S5C).  

 

Sensitivity / Control analyses 
 

All method-based control analyses were done in the ABIDE validation sample, while 

sample-specific control analyses were carried out in the LEAP sample. 

 

Age 

Despite the absence of significant age differences between the sex and diagnostic 

groups, we still also included an auto age-matching algorithm into our model code to 

confirm results when the four samples were perfectly matched within the prediction 

models. The resulting age distribution of the sex- and clinically-balanced LEAP 

sample (N=340) can be seen in Figure S1E. Results remained unchanged to those 

from the original pipeline (see Figure S6A and Table S7A). 

 

Further, our finding of reduced and superior prediction performance in autistic 

females and males, respectively, is most pronounced in childhood and decreases 

throughout development to young adulthood. Only in the last age bin of around 20-

30, we do not observe classification differences across groups. We carefully 

reviewed the possibility of a trivial technical explanation: although we have more 
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adult individuals in the pre-training step in UKB, the classifier depends mostly on the 

fine-tuning (training) stage where we retrain all learnable parameters (44). Since the 

individual age distribution in this final fine-tuned dataset (ABIDE) peaks at around 

12-years, any accuracy bias originating from the sample distribution should be 

around the younger rather than older individuals in our case.  

 

Total intracranial volume 

All the imaging inputs were controlled for brain volume through the 12 degree-of-

freedom linear registration step in the preprocessing pipeline. Still, we double-

checked whether there were any significant group differences between NT-F and 

ASC-F and between NT-M and ASC-M in total intracranial volume that might have 

influenced observed sex prediction patterns. First, we compared Freesurfer derived 

total intracranial volume estimates (before linear registration) across the groups. Two 

t tests between NT-F and ASC-F (t=-0.74, p=0.46) and between NT-M and ASC-M 

(t=-1.5, p=0.12) revealed no significant group differences. Next, we included an 

automatic brain-volume-matching algorithm on top of the age-matching algorithm to 

ensure balanced age and brain volume across sex and diagnostic groups. More 

specifically, individuals were divided into age bins spanning five years each. Within 

each age bin, individuals were ranked by their total intracranial volume, and divided 

into ten sub-groups. Hence, individuals in each sub-group were within the 10% brain 

volume rankings across the population within each age bin. We then sampled the 

same number of individuals from each sex-clinical label for each subgroup, which 

ensured that the final population was balanced across age and volume. Based on 

this, we compared the prediction differences between each sex and diagnostic group 

again. Results remained unchanged (Figure S6B and Table S7B). 
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Model choice 

Autism probability as a function of sex prediction probability  

 

Previously, we established that different diagnostic groups give rise to differential sex 

prediction accuracies. Here, by reversing the model, we confirm that conversely the 

different accuracies of sex prediction give rise to a stratification along the diagnostic 

groupings – even though using non-linear models (where compared to linear models 

x [independent variable] and y [dependent variable] cannot simply be interchanged). 

To do this, we investigated whether the probability of having autism was related to the 

sex predictions (50). We created eight probability bins in steps of 0.125 and 

determined the sample probability in each bin by dividing the total number of ASC-F 

(ASC-M) by the total number of females (males) in each bin and ran Spearman’s 

correlations between the sample probability and the predictive sex probability. Next, 

we subdivided autistic individuals into a) correctly classified females (P<0.5) / males 

(P>0.5) and b) misclassified females (P>0.5) / males (P<0.5). Within each sex, we 

compared the proportions of having autism as a function of being correctly or 

incorrectly classified. 

 

In ASC-F the sample probability of autism increased with increasing predictive 

probabilities for being classified as male (rho=-0.89, p<0.01), while there was no such 

relationship in ASC-M (rho=0.6, p=0.1; Figure S6C, left). ASC-F misclassified as male 

were significantly more likely to have an autism diagnosis than autistic females 

correctly classified as female (P=.82 vs. P=.52; χ2=3.96, p=0.02). There was no such 

relationship in ASC-M (P=.62 vs. P=0.56; χ2=1.59, p=0.1).  
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Principal component analysis with logistic regression 

 

To check model-dependence of our results in ABIDE, we applied an alternative, but 

simpler method. Following the same train/validation pattern as we applied within the 

CNN method, we ran the following principal component analysis (PCA) based 

experiments 100 times: we used 75 principal components explaining most of the 

variance of the imaging data, and subsequently trained a logistic regression classifier 

for sex classification. Results showed the same patterns as we observed before: 

reduced sex prediction accuracy in autistic females compared to autistic males 

(Cohen’s d=1.42, p=2.8e-25) and compared to NT (d=1.39, p=8.4e-25), while 

increased sex prediction accuracy in autistic males compared to NT (d=0.71, p=3.6e-

10), however with significantly reduced prediction performance (Figure S6C, right, 

and Table S7C). In this regard, we want to point out that PCA combined with logistic 

regression only takes into account features that contain very limited information (via 

PCA decomposition), which often reflects the global features in brains. Thus, it is not 

surprising that the sex prediction accuracy drops considerably compared to the 

classification results based on our CNN, model which learned non-linear features 

and classifiers.  

 

RAP validation (mask out salient regions) 

To verify the RAP method in ABIDE, we decided to compare sex prediction results 

when only using the most salient brain regions versus excluding the most salient 

brain regions in the RAP maps. For this, we generated two masks: one ASC-

sensitive and another ASC-insensitive mask. To obtain the ASC-sensitive mask, we 
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thresholded the two RAP t-maps (map-A: ASC-F vs. NT-F; map-B: ASC-M vs. NT-M) 

to retain only the 25% highest values within each. Next, we combined the two 

thresholded maps using logical union (map-C = map-A ∪ map-B), and smoothed and 

dilated (51) the resulting map-C. The ASC-insensitive mask was the difference 

between the MNI mask and the ASC-sensitive mask. Both resulting masks contained 

about 50% of voxels within the MNI brain mask and were thus comparable in size. 

Next, the RAP method was re-run twice, once within the ASC-sensitive mask and 

once within the ASC-insensitive mask and prediction accuracies were computed as 

specified earlier.  

 

Results revealed that the previously observed sex prediction accuracy differences 

were more pronounced when applying the ASC-sensitive than the ASC-insensitive 

mask (Table S7D). Specifically, using the ASC-sensitive RAP mask, sex prediction 

accuracies were significantly lower in autistic females compared to autistic males 

(Cohen’s d=1.71, p=3.8-e16) and to NT (d=1.45, p=1.6e-13). Autistic males also 

showed reduced sex prediction performance compared to NT individuals (d=1.09, 

p=6.0e-10) (Figure S6D, left). Using the ASC-insensitive mask, similar patterns albeit 

with smaller effect sizes emerged (ASC-F vs. ASC-M: d=0.63, p=5.6e-05; ASC-F vs. 

NT: d=0.33, p=2.6e-02; ASC-M vs. NT: d=0.55, p=3.9e-04; Figure S6D, right). 

 

Comparison of variance in sex prediction accuracies across 

groups 

We compared the ratios of variances of sex prediction accuracies across the groups 

using the var.test function in R. NT-M had significantly higher variance across 
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prediction accuracies compared to NT-F (F=0.15, p<0.001). There was also a sex 

differences in variance in autistic individuals, however with ASC-M having lower 

variance compared to ASC-F (F=0.4, p<0.001). ASC-F had significantly higher 

prediction variance compared to NT-F (F=2.22, p<0.001), while there was no 

significant difference between ASC-M and NT-M (F=0.82, p=0.12). 

 

Previous research shows that the male population displays higher intrinsic 

variability than females (52). Here we also see higher prediction variability across 

males than across females. We exclude however the possibility that sex prediction 

accuracy differences are driven by variance differences: if sample variance was the 

same across NT-M and NT-F, we would expect a) improved classification accuracies 

for both NT-M and NT-F (as our CNN was trained to predict maleness), b) even worse 

classification accuracies for autistic females. Thus, homogeneity of NT-sample 

variance would even further accentuate our results in autistic females, however, 

strikingly, our findings of reduced classification accuracies in autistic females hold 

even at the background of differences in NT-variance. 

Comparison of autistic individuals with high and low 

prediction accuracies 

 

We applied a quartile split on the prediction probability values in autistic males and 

females to subdivide them into highly misclassified (lower 25% - ‘ASC-M/F low’) and 

highly correctly classified (upper 25% - ‘ASC-M/F high’) individuals. These two 

classes of autistic males/females were compared by computing t-maps (ASC-M/F 

low vs. ASC-M/F high) based on their RAP maps. When comparing the top 25% with 
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the bottom 25% of autistic males and females on their RAP contrast maps, the most 

differentiating regions between highly misclassified and highly correctly classified 

autistic females were in cerebellum, left thalamus, superior frontal gyrus and frontal 

medial cortex in grey matter, and left retrolenticular part of internal capsule, posterior 

thalamic radiation, right anterior corona radiata and the splenium of corpus callosum 

in white matter (Figure S7A). The most differentiating regions between highly 

misclassified and highly correctly classified autistic males were in bilateral superior 

parietal lobule, bilateral supplementary motor cortex, precuneus, superior lateral 

occipital cortex, paracingulate gyrus, frontal medial cortex and frontal pole in grey 

matter, and bilateral superior cerebellar peduncle and right superior longitudinal 

fasciculus in white matter (Figure S7B). 

 

Gene expression decoding  

We next wanted to address the question of what the potential sources of 

masculinization were by tapping into the underlying genomic mechanisms.  

First, RAP-imaging-t-maps were uploaded on Neurovault (ASC-F vs. NT-F and ASC-

M vs. NT-M and NT-F vs. NT-M as reference; see 

(https://identifiers.org/neurovault.collection:9354). We then used the gene expression 

dataset from the Allen Human Brain Gene Expression atlas (AHBA) which includes 

samples from six post-mortem brains (3 Caucasian, 2 African, 1 Hispanic; 1 female) 

ages 24-57 years. This limited sample size and large variability across age, sex and 

ethnicity can impact the transcriptional patterns. Previous studies addressing this have 

shown that results were not driven by one single donor and generalizable beyond the 

donor brains in the AHBA after rigorously testing the effect of donor selection by 

https://identifiers.org/neurovault.collection:9354
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running leave-one-donor-out analyses (53) and using Bayesian random effects 

analysis which fitted a hierarchical Bayesian regression model using Markov Chain 

Monte Carlo sampling (54). We employed the gene expression decoding functionality 

(54) integrated in Neurosynth (55) (https://neurosynth.org) and NeuroVault (56) 

(https://neurovault.org). This performs in detail the following steps: it first uses the 

Allen Brain Atlas REST API to download the gene expression data, extracts the MNI 

coordinates for each sampling site, draws a spherical ROI (4mm) and extracts the 

average values of the statistical maps within each ROI. This way, the resulting vector 

of values can next be correlated with the normalized gene expression values to see 

how similar they are. Here, an approximate random effects analysis calculates the 

slope of best linear fit for each donor (individually fitted regression lines) and performs 

a one-sample t test on those estimates to test how consistent the relations between 

the gene expression and evaluated map values are and identifies genes whose spatial 

expression patterns are consistently (i.e., across the six donor brains) highly similar to 

the evaluated maps. Being a similarity analysis, the decoding analysis has two 

directions. In one direction, we obtain genes with positive t statistics with genes with 

high expression in areas where there are strong positive values in the RAP-imaging t-

maps (i.e., higher male probability), or vice versa, genes with hardly any expression 

in areas with very low values in the RAP-imaging t-maps (i.e., higher female 

probability). On the other hand, the decoding analysis also provides genes with 

negative t statistics – these are genes with high expression in areas where there are 

strong negative values in the RAP-imaging t-maps (i.e., higher female probability), or 

vice versa, genes with hardly any expression in areas with strong positive values in 

the RAP-imaging t-maps (i.e., higher male probability). In our analyses we are 

interested in the list of genes obtained from the decoding analysis which gives us 

https://neurosynth.org/
https://neurovault.org/
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genes that have strong positive values in the RAP-imaging t-maps (i.e., higher male 

probability) and show high gene expression values in those areas (FDR p<0.05). For 

this reason, we only retained genes from this resulting list with positive t statistics and 

corrected for multiple comparisons (FDR p<0.05). 

 

Gene classes in enrichment analyses 

After obtaining this list of genes that were highly expressed in spatial patterns 

throughout the brain and similar to the two sex-differentiation RAP maps, we went on 

to test the overlap (i.e., enrichment) of our gene lists with a set of relevant classes of 

genes. We opted for three different gene classes: 1) autism-associated genes to 

investigate whether the genetic likelihood for autism overlaps with the male 

neurophenotype; 2) genes acting in prenatal development as events during the 

embryonic period have long-lasting effects on both sexual differentiation and 

susceptibility for neurodevelopmental conditions (prenatal cell types (57)); and 3) 

sex-differentially expressed genes in prenatal development and genes 

differentially regulated by prenatal sex steroids.  

 

Autism associated genes 

Structural genetic variants  

Structural genetic variants included common genetic variants and de novo 

mutations. Common genetic risk variants were obtained from a large-scale genome-

wide association study by Grove et al. (58). SNP based P-values were converted to 

gene-based P-values using a hg19 genome build using MAGMA (59) which 

accounts for linkage disequilibrium between SNPs when calculating gene-based P-
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values. The identified list of genes was subsequently Bonferroni corrected (ASC 

commonRV). Genes harbouring rare, de novo variants associated with autism were 

identified by Satterstrom et al. (60) by whole-exome sequencing of 35,584 samples 

(11,986 with autism). A total of 102 rare, de novo protein truncating genes 

associated with autism (FDR adjusted P-value < 0.1) were identified (ASC dnPTV). 

Parikshak et al. (61) identified fetal gene co-expression modules associated with 

autism genes that have highly similar expression patterns during cortical 

development (61). They used RNA sequencing on gene expression data from 

BrainSpan whole-genome transcriptomic data and ran weighted gene co-expression 

network analysis. Among the five co-expression modules associated with different 

forms of autism risk, we selected modules 2 and 3 as transcriptional regulators were 

enriched for rare genetic variants in early fetal development (M2 and M3). 

 

Transcriptionally dysregulated genes  

To capture genetic downstream effects, we selected a range of transcriptionally 

dysregulated genes in autism. Gandal et al. (62) identified differentially expressed 

genes from an analysis of RNA sequencing data from the PsychENCODE 

Consortium, using autism post-mortem frontal and temporal cortex tissue (FDR 

adjusted P-value < 0.05) (865 downregulated: ASC DE Downreg, 746 upregulated: 

ASC DE Upreg) (62). 

Parikshak et al. (63) performed rRNA-depleted RNA sequencing using post-

mortem frontal and temporal cortical tissue samples from 48 autistic individuals and 

49 control individuals. Doing weighted gene co-expression network analysis, they 

identified transcriptionally dysregulated co-expression modules in autism. Among 

these, the downregulated modules were enriched in synaptic function and neuronal 
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genes, whereas upregulated modules were enriched in genes associated with 

inflammatory pathways and glial functions (764 downregulated: ASC CTX Downreg 

CoExpMods, 1111 upregulated: ASC CTX Upreg CoExpMods) (63). 

Performing single-nucleus RNA sequencing analysis of cortical tissue of 

individuals with autism, Velmeshev et al. (64) analysed the transcriptomes of single 

brain cells. They generated 104,559 single-nuclei gene expression profiles (52,556 

from control individuals and 52,003 from autistic individuals) and performed unbiased 

clustering of nuclear profiles and annotated clusters based on expression of known 

cell type markers. This way they identified genes differentially expressed in autism in 

specific cell types (ASC Excitatory, ASC Inhibitory, ASC Microglia, ASC 

Oligodendrocyte, ASC Astrocyte, ASC Endothelial).  

 

Prenatal cell types 

This gene list was based on the study by Polioudakis et al. (57) who performed RNA 

sequencing on 40,000 cells and created a single-cell gene expression atlas of the 

developing, mid-gestation (gestation weeks 17 to 18) human neocortex. This 

resulted in the identification of 16 transcriptionally distinct cell groups which clustered 

by known major biological cell types at this stage of development, including: 

endothelia (E), excitatory neurons (EN; migrating excitatory, maturing excitatory, 

maturing excitatory upper enriched, excitatory deep layer 1, excitatory deep layer 2), 

interneurons (IN; interneuron MGE and interneuron CGE), intermediate progenitors 

(IM), microglia (M), cycling progenitors (MN; cycling progenitor S-phase and cycling 

progenitors G2M phase), oligodendrocyte precursors (OPC), pericyte (P), and radial 

glia (RG; ventricular radial glia and outer radial glia).  
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Sex-differentially expressed genes  

We further surveyed sex-differentially, prenatally expressed genes. For this, we used 

the same sex-differential gene array expression data from prenatal samples as 

Werling et al. (65). This was based on a study by Kang et al. (66) who analyzed exon 

array data from individuals between 16 and 22 post-conception weeks from frontal, 

temporal and parietal cortex. For genes differentially regulated by sex hormones, we 

used gene lists from two studies: 1) Quartier et al. (67) conducted an RNA 

sequencing study in which embryonic neural stem cells were treated with 100nM of 

dihydrotestosterone (DHT), a potent, non-aromatizable androgen. We used the 

same list of genes differentially expressed by DHT as Lombardo et al. (68, 69). 2) 

Willsey et al. (70) conducted RNA sequencing and identified differentially expressed 

genes in Xenopus whole brain following 17-β-estradiol treatment. We used the list of 

genes differentially expressed by estrogen. 

 

Enrichment analyses 

Analyses examining enrichment were done with a custom code written by MVL 

(https://github.com/mvlombardo/utils/blob/master/genelistOverlap.R) computing the 

enrichment odds ratios and hypergeometric p-values for all enrichment 

hypergeometric tests based on the sum(dhyper) function in R. The background set 

size for enrichment analyses was set to the number protein decoding genes 

considered in the Neurosynth Gene Expression Decoding analyses (i.e., 20,787). To 

avoid biasing our findings towards genes expressed in brain, we conducted another 

enrichment analysis using a more conservative list of 16,906 background genes 

based on real estimates of genes expressed in cortical tissue (71) (see Figure S8), 

https://github.com/mvlombardo/utils/blob/master/genelistOverlap.R
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as also done in prior work (72, 73). Only comparison with FDR p<0.05 were 

interpreted further. 
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Supplemental Figures 
 

FIGURE S1. Age distributions per sample and model stepa 

 

 
 
a A) The age range in the entire LEAP sample comprised 6 to 30 years of age. For 
details see Table 1. B) The age range in the entire ADHD sample comprised 7 to 29 
years of age. For details see Table S2. C) Age distribution in the sex- and clinically-
balanced LEAP sample. D) Age distribution in the sex- and clinically-balanced ADHD 
sample when applying age-matching before the model application. E) Age 
distribution in the sex- and clinically-balanced LEAP sample when applying age-
matching within the model application. F) Age distribution in the sex- and clinically-
balanced ADHD sample when applying age-matching within the model application. 
As described in the main manuscript, ‘sex- and clinically-balanced’ refers to 
randomly sampling the cohort 100 times for training and validation to get balanced, 
unbiased numbers of individuals in each diagnostic (ASC/ADHD/NT) and sex group 
(M/F) across all sites. For further details, see Table S4. Abbreviations: ASC-
F=autistic females, ASC-M=autistic males, NT-F= neurotypical females, NT-M= 
neurotypical males, ADHD= attention-deficit/hyperactivity disorder, ADHD-F= 
females with ADHD, ADHD-M=males with ADHD. 
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FIGURE S2. Simple Fully Convolutional Networka 

 
 
a The deep neural network architecture used in this work is a simple fully 
convolutional neural network (SFCN). The network takes linearly registered MRI 
brain 3D images as input. It consists of five Conv3D[3x3x3]-BatchNorm-
MaxPool[2x2x2]-ReLU building blocks, and one Conv3D[1x1x1]-BatchNorm-ReLU 
building block, and then the average pooling and the final fully connected (FC) layer 
(effectively implemented as Cov3D[1x1x1]). The FC-layer outputs are two values, 
converted through a softmax layer to create the final outputs representing the 
‘probability’ of sex prediction (i.e., predictive confidence).  
 

 

FIGURE S3. Cognitive associationsa 

 

a Associations between predicted male probability (i.e., predictive confidence) and 
sex-differential cognitive features. A) Association between the global sex prediction 
probabilities and correct performance on the Reading the Mind in the Eyes task 
(RMET) in autistic females. B) Association between values extracted from the female 
RAP-imaging-t-maps (brain-based sex prediction values) and emotional face 
recognition accuracy (KDEF) in autistic values. Plotted values are z-standardized.  
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FIGURE S4. ADHD sample prediction accuraciesa 

 
a Comparison of sex prediction model performance across diagnostic and sex 
groups. We compare sex prediction accuracy differences between males and 
females with ADHD (ADHD: F – M), females with ADHD and neurotypical females 
(F: ADHD – NT) and males with ADHD and neurotypical males (M: ADHD – NT) in 
both the clinically- and sex-balanced sample matched for age before model 
application (A) and in the clinically- and sex-balanced sample matched for age within 
the model application (B). Each dot represents one model out of 100 models in total. 
Negative values mean the model performs worse in the first sex/diagnostic group. 
Abbreviations: NT=neurotypical, ADHD=attention-deficit/hyperactivity disorder, 
F=females, M=males. 
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FIGURE S5. Comparison of autistic individuals with and without ADHDa 
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a Comparison of sex prediction model performance across diagnostic and sex 
groups. We compare sex prediction accuracy differences between autistic males and 
autistic females (ASC: F – M), autistic females and neurotypical females (F: ASC – 
NT) and autistic males and neurotypical males (M: ASC – NT) in LEAP including 
either autistic individuals with co-occurring ADHD (A) or autistic individuals without 
co-occurring ADHD (B). In C) we compare sex prediction model performance 
between autistic males with and without ADHD and autistic females with and without 
ADHD. Each dot represents one model out of 100 models in total. Negative values 
mean the model performs worse in the first sex/diagnostic group. Abbreviations: 
ADHD+=autistic individuals with co-occurring ADHD, ADHD– = autistic individuals 
without co-occurring ADHD, NT=neurotypical, ASC=autism, ADHD=attention-
deficit/hyperactivity disorder, F=females, M=males. 
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FIGURE S6. Sensitivity and control analysesa 

 
 
a Overview of all sensitivity and control analyses. A) AGE. We included an auto age-
matching algorithm into our model code to confirm results when the four samples 
were perfectly matched for age within the sex prediction models. We plot the sex 
prediction model performance across diagnostic and sex groups comparing sex 
prediction accuracy differences between autistic males and autistic females (ASC: F 
– M), autistic females and neurotypical females (F: ASC – NT) and autistic males 
and neurotypical males (M: ASC – NT) in LEAP. Each dot represents one model out 
of 100 models in total. Negative values mean the model performs worse in the first 
sex/diagnostic group. B) TOTAL INTRACRANIAL VOLUME. We extended the auto-
age-matching algorithm to also match individuals on total intracranial volume. C) 
MODEL CHOICE. Left: Association between autism likelihood (sample probability) 
and predictive sex class probabilities. There is an association in autistic females 
(pink), however not in males (blue). Right: Principal component analysis combined 
with logistic regression: we used 75 principal components explaining most of the 
variance of the imaging data, and subsequently trained a logistic regression classifier 
for sex classification. D) RAP VALIDATION. We validated the RAP method in ABIDE 
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by comparing sex prediction accuracy results when only using the most salient brain 
regions (left panel: ‘ASC-sensitive mask’) versus excluding the most salient brain 
regions in the RAP maps (right panel: ‘ASC-insensitive mask’). Abbreviations: 
PCA=principal component analysis, NT=neurotypical, ASC=autism, F=females, 
M=males, RAP=region-aligned prediction method. 
 
 

FIGURE S7. Comparison of highly mis- and accurately classified autistic 
individualsa 

 
a The brain maps depict the different RAP (spatial representation of the sex 
predictions) imaging-t-maps across A) highly-accurately classified vs. highly mis-
classified autistic females and B) highly-accurately classified vs. highly mis-classified 
autistic males. Abbreviations: ASC=autism, F=females, M=males. 
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FIGURE S8. Enrichment analyses when using a more conservative thresholda 

 

 

a Enrichment analysis using a more conservative list of 16,906 background genes 
based on real estimates of genes expressed in cortical tissue (71). Odds-ratios at an 
FDR-corrected p<0.05 resulting from the gene set enrichment analyses of RAP-
imaging-t-maps (ASC-M vs. NT-M; ASC-F vs. NT-F; NT-M vs. NT-F) and associated 
gene lists with different classes of genes acting prenatally and relevant in the context 
of autism and sexual differentiation. (A) genes from prenatal cell types (57) 
(endothelia (E), excitatory neurons (EN; migrating excitatory, maturing excitatory 
upper enriched, maturing excitatory, excitatory deep layer 1, excitatory deep layer 2), 
interneurons (IN; interneuron MGE and interneuron CGE), intermediate progenitors 
(IP), microglia (M), mitotic progenitors (MP; cycling progenitor S-phase and cycling 
progenitors G2M phase), oligodendrocyte precursors (OPC), pericyte (P), and radial 
glia (RG; ventricular radial glia and outer radial glia), (B) autism-associated genes, 
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including common genetic variants (ASC commonRV) (58), de novo mutations (fetal 
gene co-expression modules [ASC fetal M2, ASC fetal M3] (61); 102 rare, de novo 
protein truncating genes [ASC dnPTV]) (60) and transcriptionally dysregulated genes 
(differentially-expressed downregulated [ASC DE Downreg], differentially-expressed 
upregulated [ASD DE Upreg] (62); cortical downregulated co-expression modules 
[CTX Downreg CoExpMods], cortical upregulated co-expression modules [CTX 
Upreg CoExpMods] (63); ASC Excitatory, ASC Inhibitory, ASC Microglia, ASC 
Oligodendrocyte, ASC Astrocyte, ASC Endothelial (64)), and (C) sex-differentially 
expressed genes acting prenatally such as genes differentially regulated by 
dihydrotestosterone (DHT) (67–69), estrogen (70) and (autosomal and X-/Y-
chromosome-linked) sex-differential gene array expression data from prenatal 
samples (65, 66). Abbreviations: NT=neurotypical, ASC=autism, F=females, 
M=males. 
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Supplemental Tables 
 
 TABLE S1. ABIDE sample characterization 

 Abbreviations: ASC=autism, NT=neurotypical, M=male, F=females, FIQ=full-scale IQ, PIQ=performance IQ, VIQ=verbal IQ, ADI=Autism Diagnostic Interview, ADOS=Autism Diagnostic Observtion 

Schedule, CSS=calibrated severity score, SA=social-affect, RRB=restricted, repetitive behavior 

 

Variable ASC-M  ASC-F NT-M NT-F post 
hoc 

N 526 115 532 239 - 

 Mean Std Range Mean Std Range Mean Std Range Mean Std Range - 

age 13.20 5.70 5.32-55.0 13.66 7.28 5.22-54.0 13.53 6.27 5.89-56.0 13.070 6.36 5.91-47.0 ASC=NT 

FIQ 105.39 17.63 41.0-149.0 104.35 16.67 66.0-146.0 112.39 12.65 71.0-148.0 113.67 13.12 80.0-149.0 ASC<NT 

VIQ 106.30  18.59 42.0-180.0 105.71 16.67 70.0-145.0 113.71 13.47 67.0-147.0 114.09 14.56 83.0-156.0 ASC<NT 

PIQ 104.74 17.33 37.0-149.0 102.21 18.11 53.0-148.0 108.78 13.92 62.0-147.0 109.49 13.26 79.0-145.0 ASC<NT 

ADI social 19.64  5.34 0.0-30.0 19.08 6.20 0.0-30.0 - - - - - - M=F 

ADI communication 15.73 4.48 0.0-25.0 14.90 5.05 0.0-24.0 - - - - - - M=F 

ADI RRB 5.93 2.49 0.0-12.0 5.78 2.55 0.0-12.0 - - - - - - M=F 

ADOS-G total 11.38 3.97 2.0-22.0 11.81 3.90 3.0-21.0 - - - - - - M=F 

ADOS-G 
coommunnication 

3.52  1.57 0.0-8.0 3.50 1.59 0.0-7.0 - - - - - - M=F 

ADOS-G social 7.74 2.78 2.0-14.0 7.95 2.45 2.0-14.0 - - - - - - M=F 

ADOS-G RRB 2.11 1.54 0.0-7.0 2.02 1.55 0.0-5.0 - - - - - - M=F 

ADOS-2 CSS 7.04 2.06 1.0-10.0 6.69 1.72 2.0-10.0 - - - - - - M=F 

ADOS-2 SA 9.37 3.81 1.0-20.0 8.79 3.14 4.0-18.0 - - - - - - M=F 

ADOS-2 RRB CSS 3.10 1.82 0.0-8.0 2.79 1.46 0.0-6.0 - - - - - - M=F 
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TABLE S2. ADHD sample characterization 

Variable ADHD-M ADHD-F NT-M NT-F post hoc 

N 324 130 225 208 - 

 Mean Std Range Mean Std Range Mean Std Range Mean Std Range - 

age 13.27 3.40 7.25-21.0 13.02 3.95 7.35-26.0 12.55 2.82 7.29-22.0 12.83 3.86 7.33-24.0 ADHD=NT 

FIQ 102.81 16.77 55.0-149.0 100.66 16.06 48.0-134.0 114.08 15.35 58.0-158.0 112.54 14.15 75.0-144.0 ADHD<NT 

VIQ 105.09 14.78 54.0-141.0 104.25 16.22 65.0-138.0 113.06 13.59 71.0-141.0 111.49 14.27 71.0-146.0 ADHD<NT 

PIQ 101.82 14.76 70.0-143.0 103.86 13.65 79.0-135.0 114.41 13.69 83.0-138.0 107.71 13.69 67.0-135.0 ADHD<NT 

 
Abbreviations: ADHD=attention-deficti/hyper-activity disorder, NT=neurotypical, M=male, F=females, FIQ=full-scale IQ, PIQ=performance IQ, VIQ=verbal IQ  
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TABLE S3. Summary of acquisition parameters across sites in EU-AIMS LEAP 

 

 

 

 

 

Site Manufacturer Model Software Version 
Acquisition 
sequence 

Coverage Slices 
Thickness 
[mm] 

Resolution 
[mm3] 

TR 
[s] 

TE 
[ms] 

FA 
[°] 

FOV 

 

Cambridge Siemens Verio Syngo MR B17 Tfl3d1_ns 256*256 176 1.2 1.1*1.1*1.2 2.3 2.95 9 270 
 

 

London 
GE Medical 
systems 

Discovery 
mr750 

LX MR 
DV23.1_V02_1317.c 

SAG ADNI 
GO ACC 
SPGR 

256*256 196 1.2 1.1*1.1*1.2 7.31 3.02 11 270  

Mannheim Siemens TimTrio Syngo MR B17 
MPRAGE 
ADNI 

256*256 176 1.2 1.1*1.1*1.2 2.3 2.93 9 270  

Nijmegen Siemens Skyra Syngo MRD13 Tfl3d1_16ns 256*256 176 1.2 1.1*1.1*1.2 2.3 2.93 9 270  

Rome 
GE Medical 
systems 

Signa 
HDxt 

24/LX/MR 
HD16.0_V02_1131.a 

SAG ADNI 
GO ACC 
SPGR 

256*256 172 1.2 1.1*1.1*1.2 5.96 1.76 11 270  

Utrecht 
Philips 
Medical 
Systems 

Achieva/ 

3.2.3, 3.2.3.1 ADNI GO 2 256*256 170 1.2 1.1*1.1*1.2 6.76 3.1 9 270 

 

Ingenia 
CX 
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TABLE S4. Summary of sample sizes employed at different stages of the model application 

Sample Dataset NT-F NT-M ASC-F ASC-M Total 

Train ABIDE 141 141 0 0 282 

Test ABIDE 84 84 84 84 336 

Test LEAP 98 98 98 98 392 

Test (auto age-matching) LEAP 85 85 85 85 340 

Sample Dataset NT-F NT-M ADHD-F ADHD-M Total 

Test (manual age-matching) ADHD 130 130 130 130 520 

Test (auto age-matching) ADHD 125 125 125 125 500 

 
Abbreviations: ASC=autism, NT=neurotypical, M=male, F=females, ADHD=attention-deficti/hyper-activity disorder 

 

TABLE S5. Sex-specific prediction accuracies in ADHD   

Cohort ADHD200 + NeuroImage 

Group NT ADHD-F ADHD-M 

A – Manual age-matching before the model application 

Sex-
specific 

accuracy 

Mean 0.733 0.722 0.730 

SD 0.046 0.069 0.064 

B – Auto-age-matching within the model application 

Sex-
specific 

accuracy 

Mean 0.730 0.722 0.712 

SD 0.045 0.066 0.062 

 
Abbreviations: ADHD=attention-deficti/hyper-activity disorder, NT=neurotypical, M=male, F=females 
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TABLE S6. Comparison of autistic individuals with and without ADHD 

Group NT ASC-F ASC-M  

Sub-group - ADHD+ ADHD– ADHD+ ADHD– 

Sex-
specific 

accuracy 

Mean 0.799 0.714 0.747 0.866 0.863 

SD 0.045 0.11 0.109 0.092 0.086 

 
Abbreviations: ASC=autism, NT=neurotypical, M=male, F=females, ADHD=attention-deficti/hyper-activity disorder, ADHD+= autistic individuals with ADHD, ADHD-=autistic indivduals without ADHD 
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TABLE S7. Sex-specific prediction accuracies across control analyses 

Group NT ASC-F ASC-M 

A – Auto-age-matching  

Sex-specific 
accuracy 

Mean 0.800 0.737 0.863 

SD 0.024 0.053 0.041 

B – Auto-age- + brain volume-matching 

Sex-specific 
accuracy 

Mean 0.734 0.655 0.843 

 SD 0.050 0.100 0.062 

C – Principal component analysis and logistic regression 

Sex-specific 
accuracy 

Mean 0.647 0.568 0.686 

SD 0.037 0.049 0.052 

D – RAP verification 

ASC-sensitive 
mask  

Mean 0.701 0.620 0.763 

sex-specific 
accuracy 

SD 0.030 0.056 0.056 

ASC-insensitive 
mask 

Mean 0.66 0.638 0.702 

sex-specific 
accuracy 

SD 0.037 0.060 0.063 

 
Abbreviations: ASC=autism, NT=neurotypical, M=male, F=females, RAP=region-aligned prediction 
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TABLE S8. Most differentiating regions between NT-M and NT-F 

Grey Matter region hemisphere size mean std 

Temporal Fusiform Cortex, posterior division B 22748 0.674848 0.155339 

Planum Temporale L 12209 0.667778 0.121297 

Caudate L 3949 0.602529 0.136994 

Heschl's Gyrus (includes H1 and H2) L 6084 0.676093 0.13534 

Parietal Operculum Cortex B 12782 0.661188 0.118787 

Parahippocampal Gyrus, posterior division B 14834 0.594444 0.130176 

Hippocampus R 6165 0.595922 0.090629 

Supramarginal Gyrus, posterior division B 32114 0.611748 0.10221 

Cerebellum Crus I L 26823 0.586231 0.108581 

Cerebellum Vermis Crus I B 5 0.59817 0.006328 

Cerebellum Vermis VI B 3736 0.581022 0.055262 

Temporal Occipital Fusiform Cortex B 19047 0.58575 0.125005 

Superior Temporal Gyrus, posterior division B 17277 0.610472 0.100785 

Angular Gyrus B 29354 0.580459 0.095334 

Planum Polare B 9013 0.565302 0.094504 

Inferior Temporal Gyrus, posterior division B 32133 0.559189 0.118362 

Accumbens L 756 0.551552 0.067611 

Supramarginal Gyrus, anterior division B 22159 0.590058 0.130507 

Cerebellum I-IV R 9228 0.558872 0.109159 

Central Opercular Cortex B 19707 0.530095 0.160716 
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White Matter connection hemisphere size mean std 

Sagittal stratum (include inferior longitidinal fasciculus and inferior 
fronto-occipital fasciculus) 

R 2228 0.744193 0.07272 

Sagittal stratum (include inferior longitidinal fasciculus and inferior 
fronto-occipital fasciculus) 

L 2231 0.694 0.072734 

Tapetum L 600 0.666728 0.032677 

Retrolenticular part of internal capsule R 2515 0.636811 0.095918 

Medial lemniscus R 690 0.662763 0.049701 

Tapetum R 596 0.636833 0.04043 

Cingulum (hippocampus) R 1236 0.60971 0.1172 

Retrolenticular part of internal capsule L 2469 0.569462 0.114106 

Posterior corona radiata R 3728 0.591619 0.065996 

Corticospinal tract R 1362 0.580639 0.067095 

Fornix (cres) / Stria terminalis (can not be resolved with current 
resolution) 

R 1124 0.574191 0.062119 

Anterior limb of internal capsule L 3018 0.558917 0.085043 

Cingulum (hippocampus) L 1155 0.564226 0.071553 

Genu of corpus callosum B 8851 0.542123 0.104349 

Posterior corona radiata L 3714 0.547375 0.072429 

Splenium of corpus callosum B 12729 0.539905 0.056821 

Cerebral peduncle R 2278 0.530177 0.063799 

Inferior cerebellar peduncle R 968 0.536343 0.060001 

Posterior thalamic radiation (include optic radiation) L 3978 0.515662 0.16168 

 

Abbreviations: NT=neurotypical, M=male, F=female, R=right, L=left, B=both 
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TABLE S9.  Most male-shifted regions in ASC-F 

Grey Matter region hemisphere size mean std 

Cerebellum Crus I L 26823 0.255442 0.072154 

Heschl's Gyrus (includes H1 and H2) B 6084 0.226662 0.104109 

Caudate L 3949 0.188232 0.110903 

Planum Temporale L 12209 0.183346 0.134065 

Occipital Fusiform Gyrus B 28100 0.204175 0.133693 

Amygdala L 2662 0.168623 0.063565 

Parietal Operculum Cortex B 12782 0.171952 0.086195 

Hippocampus L 6154 0.165365 0.0567 

Accumbens L 756 0.171228 0.040709 

Inferior Temporal Gyrus, temporooccipital part B 20013 0.157296 0.083235 

Cerebellum VI L 17861 0.172028 0.094903 

Inferior Temporal Gyrus, posterior division B 32133 0.146074 0.114158 

Caudate R 4127 0.142831 0.092932 

Cerebellum Crus II L 21227 0.141174 0.089322 

Central Opercular Cortex B 19707 0.132469 0.113722 

Temporal Occipital Fusiform Cortex B 19047 0.137184 0.08119 

Lateral Occipital Cortex, inferior division B 57896 0.139874 0.107609 

Superior Temporal Gyrus, posterior division B 17277 0.122037 0.156537 

Planum Polare B 9013 0.132844 0.079657 

Parahippocampal Gyrus, posterior division B 14834 0.116739 0.086311 
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White Matter connection hemisphere size mean std 

Genu of corpus callosum B 8851 0.272063 0.102349 

Retrolenticular part of internal capsule R 2515 0.27698 0.06932 

Sagittal stratum (include inferior longitidinal fasciculus and inferior 
fronto-occipital fasciculus) 

R 2228 0.221877 0.115045 

Tapetum L 600 0.203539 0.110326 

Retrolenticular part of internal capsule L 2469 0.218705 0.063159 

Fornix (cres) / Stria terminalis (can not be resolved with current 
resolution) 

L 1125 0.207553 0.044443 

Sagittal stratum (include inferior longitidinal fasciculus and inferior 
fronto-occipital fasciculus) 

L 2231 0.195957 0.039052 

Tapetum R 596 0.199917 0.020729 

Fornix (cres) / Stria terminalis (can not be resolved with current 
resolution) 

R 1124 0.17257 0.101445 

Uncinate fasciculus  L 376 0.164049 0.029604 

Superior longitudinal fasciculus R 6607 0.167562 0.059507 

Superior cerebellar peduncle  R 992 0.137128 0.092553 

Posterior thalamic radiation (include optic radiation) L 3978 0.119328 0.145831 

Cingulum (hippocampus) L 1155 0.130622 0.023392 

Posterior corona radiata R 3728 0.13005 0.034196 

Posterior thalamic radiation (include optic radiation) R 3972 0.138363 0.095073 

Uncinate fasciculus R 380 0.120574 0.022961 

Medial lemniscus R 690 0.137374 0.06416 

Corticospinal tract R 1362 0.132608 0.080538 

 
Abbreviations: ASC=autism, F=female, R=right, L=left, B=both 
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TABLE S10. Most male-shifted regions in ASC-M 

Grey Matter region hemisphere size mean std 

Amygdala R 3215 0.17297 0.054697 

Pallidum R 2118 0.164403 0.02943 

Accumbens R 666 0.159551 0.022322 

Thalamus L 11488 0.158337 0.033188 

Cerebellum VIIIa R 9826 0.137376 0.070234 

Cingulate Gyrus, anterior division B 31689 0.149518 0.04923 

Thalamus R 11186 0.14557 0.035606 

Putamen R 6397 0.132497 0.046621 

Caudate R 4127 0.130855 0.027515 

Subcallosal Cortex B 16466 0.131314 0.047305 

Cerebellum VIIb R 9885 0.115508 0.065721 

Frontal Medial Cortex B 12100 0.112058 0.070862 

Cerebellum VIIIb R 8185 0.114916 0.055648 

Juxtapositional Lobule Cortex (formerly Supplementary Motor 
Cortex) 

B 17545 0.113293 0.042752 

Pallidum L 2133 0.105007 0.049254 

Cingulate Gyrus, posterior division B 35642 0.100388 0.051582 

Temporal Pole B 62256 0.095262 0.061998 

Accumbens L 756 0.097188 0.027359 

Amygdala L 2662 0.0988 0.055703 

Paracingulate Gyrus B 31069 0.096296 0.052689 
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White Matter connection hemisphere size mean std 

Superior corona radiata R 7500 0.195155 0.033281 

Superior fronto-occipital fasciculus (could be a part of anterior 
internal capsule) 

R 507 0.191542 0.009216 

Anterior corona radiata R 6849 0.172089 0.041197 

Cerebral peduncle L 2278 0.166158 0.034835 

Cingulum (cingulate gyrus) R 2342 0.168892 0.041982 

Posterior limb of internal capsule R 3754 0.154056 0.041451 

Genu of corpus callosum B 8851 0.143966 0.062544 

Cerebral peduncle R 2278 0.140164 0.082683 

Body of corpus callosum B 13711 0.143612 0.033902 

Posterior limb of internal capsule L 3752 0.137433 0.026209 

Superior longitudinal fasciculus R 6607 0.128455 0.082359 

Anterior limb of internal capsule R 3138 0.14209 0.02755 

Fornix (column and body of fornix) B 659 0.128445 0.031074 

Retrolenticular part of internal capsule L 2469 0.122443 0.055491 

Fornix (cres) / Stria terminalis (can not be resolved with current 
resolution) 

L 1125 0.121074 0.058493 

Superior fronto-occipital fasciculus (could be a part of anterior 
internal capsule) 

L 507 0.121725 0.033861 

Superior corona radiata L 7508 0.111048 0.041673 

Cingulum (cingulate gyrus) L 2751 0.112687 0.035577 

 
Abbreviations: ASC=autism, M=male, R=right, L=left, B=both 

 

 


