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Supplementary Materials and Methods 

Participants 

Participants were included if they or their parents/guardians were able to provide informed written or verbal 

consent/assent to their participation in this study (after receiving a complete description of the study), and if they 

had a high-quality structural MRI scan. Autistic participants were included if they had an existing clinical 

diagnosis of ASD in accordance with DSM-IV/ICD-10 or DSM-5 criteria (1, 2); and Vineland Adaptive 

Behavior Scale-II (VABS-II) scores for both time points. As up to 70% of autistic individuals present with one 

or more co-occurring psychiatric conditions (3), all psychiatric comorbidities (except for psychosis and bipolar 

disorders) were allowed. Moreover, given the high number of autistic individuals who are being prescribed 

regular medication (30-50% in Europe (4) and 70% in the US (5)), those on stable medication were also 

included in this study. In contrast, participants with conditions precluding them from safe scanning, such as 

metal objects in their body, were excluded. The study was approved by national and local ethics review boards 

at each study site. This included the London-Central and Queen Square Health Research Authority Research 

Ethics Committee (University of Cambridge and King’s College London; ID 13/LO/1156), the UMM 

University Medical Mannheim Medical Ethics Commission II (Mannheim University; ID 2014-540N-MA), the 

Radboud University Medical Centre Institute Ensuring Quality and Safety Committee on Research Involving 

Human Subjects Arnhem-Nijmegen (Radboud University and Utrecht University; ID 2013/455), and the 

University Campus Bio-Medical Ethics Committee De Roma (Rome University; ID 18/14 PAR ComET CBM). 

This study was carried out to Good Clinical Practice (ICH GCP) standards.  

 

 

Cortical reconstruction using FreeSurfer 

To ensure consistent image quality, we first performed manual quality control. Specifically, we inspected all 

scans manually; and excluded scans with visible anomalies or significant movement artefacts from further 

analyses. Next, in each remaining T1 volume, we used FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/), 

which performs automated image quality control and computes models of the cortical surface. In brief, 

FreeSurfer performs intensity normalization (correction for intensity non-uniformity in MRI data), skull 

stripping (improves signal to noise ratio by removing the skull), and an image segmentation (multi-step 

procedure providing the base for subsequent estimation of surface measures; also provides output that is 

adjusted during manual edits, see below) using a connected-components algorithm. Next, it generates a filled 

white matter volume for each hemisphere and, by fitting a deformable template, a surface tessellation for each 

of these volumes. For each subject, this yields a mesh (of triangular elements) for the inner (white-matter) and 

outer (pial) cortical surface consisting of ~150k vertices (points in each triangular element) per hemisphere. For 

a more detailed description of these well-validated and fully automated procedures, please refer to e.g., (6-9). To 

ensure image quality further (through manual and automated steps), each reconstructed surface was inspected 

visually for reconstruction errors by three independent and experienced researchers (who were blinded to the 

diagnostic status of each participant). Of the initial 709 individual’s scans, the researchers (a) accepted 347 

scans (48.9%); (b) rejected 52 scans (7.3%), mostly due to severe (motion) artefacts; and (c) prescribed manual 

edits for 310 scans (43.7%) in the case of smaller, i.e., local, reconstruction errors. These 310 images were 

manually edited, (re-)pre-processed, and visually (re)assessed. Of these, 307 surface reconstructions improved; 

the remaining three were excluded from all further statistical analyses. We also excluded 15 scans due to 

scanner upgrades/missing demographic information. In total, we excluded 56 out of 416 (13.5%) autistic 

individuals and 14 out of 293 (4.8%) neurotypicals across sites, i.e., the original dataset contained data from 

n=709 individuals, and the final dataset contained data from n=639 individuals. This dropout was approximately 

evenly distributed across sites (Cambridge: 10 (5 ASD, 5 TD)/88=11.4%; King’s: 31 (28 ASD, 3 

TD)/241=12.9%; Mannheim: 8 (5 ASD, 3 TD)/69=11.6%; Nijmegen: 13 (11 ASD, 2 TD)/184=7.1%; Rome: 

0/41=0%; Utrecht: 8 (7 ASD, 1 TD)/86=9.3%). Finally, we selected those autistic individuals with recorded 

adaptive behaviour scores; and retained a final sample of 483 individuals (204 ASD, 279 TD) Table2. We then 

computed three vertex-wise cortical morphometric features: cortical volume (CV), cortical thickness (CT), and 

surface area (SA). CT values were calculated as the closest distance from the grey-white matter boundary to the 

grey matter-cerebrospinal fluid boundary at each vertex on the tessellated surface (8). Vertex-based estimates of 

SA were derived as outlined by Winkler et al. (10) and multiplied by CT to compute vertex-wise estimates of 

CV. For each subject, we also computed total CV, mean CT, and total SA values across the entire brain. To 

improve our ability to detect population changes, each parameter was smoothed using a 10 mm surface-based 

smoothing kernel. This kernel was selected based on previous reports that 10 mm may balance the trade-off 

between reliability and statistical power (11). 

 

 

https://surfer.nmr.mgh.harvard.edu/
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Measures of adaptive functioning using the VABS-II  

To assess our autistic participants’ adaptive behaviour, we interviewed their parents/carers using the VABS-II 

(12). This semi-structured interview has a high test-retest reliability (Intraclass-correlation coefficient 

[ICC]=0.8-0.9; (13)); and moderate to high inter-interviewer reliability (ICC=0.7-.76), moderate to high inter-

rater reliability (ICC=.71-.81), and excellent internal consistency (split half reliability coefficient: .93-.97) (all 

based on VABS-II manual). The VABS-II assesses a person’s current level of everyday functioning across three 

domains, each of which is composed of three subdomains. They include communication (expressive, receptive, 

and written), daily living skills (community, domestic, and personal), and socialization (coping skills, 

interpersonal relationships, and play and leisure time). We derived age-normed standard scores (mean=100, 

standard deviation=15) for each domain. Next, we computed the Adaptive Behaviour Composite (ABC) score 

(i.e., the total degree of impairment across all three domains) both at T1 and T2, as well as the change in 

between (VT2-VT1). Based on these ABC change scores and recently published estimates of what constitutes a 

‘Minimal Clinically Important Difference’ (MCID) (14), we classified autistic individuals into three adaptive 

outcome subgroups: those whose scores could be said to meaningfully improve (Increasers; VT2-VT14), showed 

no meaningful change (No-changers; -4<VT2-VT1<4), and those whose scores appeared to have meaningfully 

declined (Decreasers; -4≥ VT2-VT1). In contrast to other related measures (such as the Minimum Detectable 

Change [MDC], which considers the standard error of measurement, e.g., based on the test-retest reliability), the 

MCID quantifies the amount of change required to be clinically, rather than statistically, meaningful. As such, 

the MCID is widely supported (including by the Food and Drug Administration, FDA) (15) as a way to evaluate 

(treatment) outcomes. To adjust for regression to the mean, we controlled all relevant analyses for baseline ABC 

scores (FigureS1). 

 

 

Neuroimaging: statistical analyses 

In this study, we examined three cortical features: CV, SA, and CT. We selected these features because a wealth 

of studies has researched and implicated them in ASD (16-19). Notably, SA and CT are thought to have 

different (separate) underpinning neurobiological mechanisms (20-22). In contrast, CV is the product of SA and 

CT, and therefore not an independent measure. Nonetheless, previous studies suggest that the contributions of 

SA and CT to CV may vary across regions, age, and be atypical in ASD (16, 21, 23, 24). Hence, examining CV 

may not only help to jointly investigate the product of (atypical) SA and CT, but also provide insights into how 

these features interact (differently) with each other in ASD.  

 

Analysis 1: ASD subgroup comparison 

First, we tested if there were neuroanatomical differences at T1 between groups of individuals that shared an 

adaptive outcome. To address this aim, we ran GLM regression models computing the parameter estimates for 

CV/CT (Ci) and SA (SAi) at each vertex i. We included adaptive outcome subgroup, sex, and site as fixed-effect 

factors; and linear (CV/CT/SA) and quadratic (CV/CT) age (these age terms were selected based on previous 

literature suggesting that SA follows a linear growth trajectory (25, 26); while CV (27) and CT (25, 26) follow 

quadratic growth trajectories), IQ, total brain measures (total CV/SA, mean CT), and T1 ABC scores (VT1) as 

continuous covariates, i.e. Ci = β0 + β1Age + β2Age2 + β3Group + β4Sex + β5IQ + β6Site +
β7Total Brain + β8VT1 + εi and SAi =  β0 + β1Age + β2Group + β3Sex + β4IQ + β5Site + β6Total Brain +
β7VT1 + εi , where 𝜀𝑖 is the residual error at vertex i. All continuous variables were mean centred across groups 

to improve the interpretability of the coefficients. We examined between-group differences using the 

coefficients β3 (for CV and CT) and β2 (for SA). We corrected for multiple comparisons across the whole brain 

using random-field theory (RFT)-based cluster-correction for non-isotropic images with a cluster-defining and 

p-value significance threshold of p<.05 (two-tailed) (28). Additionally, we performed our analyses applying 

stricter cluster-defining thresholds (.01 and .001) at a cluster p-value threshold of <.05 (two-tailed) to identify 

those clusters displaying (highly) robust effects. Given our a priori interest into CV, SA, and CT, (and their 

distinct neurobiological underpinnings) we treated them as separate analyses and did not correct for multiple 

comparisons across these three features. To display our findings, we mapped our statistical effects onto the 

FreeSurfer high-resolution template in standard space (fsaverage).  

 

Analysis 1: supplementary analyses 

To examine the possibility that our results were distorted by the inclusion or exclusion of several (potentially) 

confounding factors, we conducted supplementary analyses. Specifically, we repeated all analyses without 

covarying for total brain measures; with two additional approaches correcting for site effects, including ComBat 

batch effect harmonization (29) and modelling site as a random effect; while covarying for medication; and, 

given the role of IQ in ASD (30), with and without correction for IQ.  
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Also, we extended our primary analyses, which followed a categorical approach based on the (potentially 

clinically meaningful) MCID-derived cut-off. Specifically, we conducted supplementary analyses using a 

continuous approach to test if there was an association between adaptive outcome and neuroanatomy 

independent of the MCID ‘cut-off’ of four units. To address this aim, we ran GLM regression models 

computing the parameter estimates for CV/CT (Ci) and SA (SAi) at each vertex i, including sex and site as 

fixed-effect factors; and continuous change in adaptive behaviour (Change in ABC scores), linear and quadratic 

age (selected based on previous literature (26, 31)), IQ, total brain measures (total CV/SA, mean CT), and T1 

ABC scores (VT1) as continuous variables, i.e. Ci = β0 + β1Age + β2Age2 + β3Change in ABC scores +
β4Sex + β5IQ + β6Site + β7Total Brain + β8VT1 + εi and SAi =  β0 + β1Age + β2Change in ABC scores +
β3Sex + β4IQ + β5Site + β6Total Brain + β7VT1 + εi , where 𝜀𝑖 is the residual error at vertex i. We then 

examined the main effect of Change in ABC scores using the coefficients β3 (for CV and CT) and β2 (for SA).  

 

We also repeated our analyses to examine the main effect of subgroup across all ASD individuals. To this aim, 

we recomputed our analyses using the models specified above (but exchanging the continuous change in 

adaptive behaviour variable for a categorical factor denoting subgroup); and examined the effect of subgroup 

using the coefficients β3 (for CV and CT) and β2 (for SA). 

 

Moreover, our primary analyses harnessed the full age-range in our sample; but we recognize that, given the 

developmental nature of ASD, the association between neuroanatomy and adaptive outcome may vary across 

ages and follow-up durations. Therefore, we conducted supplementary analyses controlling for follow-up 

duration and its interaction with age.   

 

Additionally, given that we observed both age- and sex-differences between the ASD subgroups, we reran our 

analyses in a subsample of individuals that were matched for age (range 13.5-19 years, ntotal = 83), sex, and IQ. 

Our primary results were unchanged across these sensitivity analyses. 

 

Additionally, to disentangle the neuroanatomical correlates of adaptive outcome across age - and also to make 

our findings more easily comparable to previous research restricted to individual age groups - we conducted 

supplementary analyses of between-outcome group differences separately within children/adolescents (6-17 

years of age) and adults (18-30 years of age). We grouped children and adolescents together to retain balanced 

sample sizes, i.e., numbers of participants within outcome groups within each age-group. Analyses for the IG vs 

DG group (the biggest outcome ‘contrast’) were performed exactly as outlined above in Analysis 1. 

 

Also, our primary goal was to examine adaptive behaviour and we relied on a single instrument (VABS-II). To 

further corroborate an association between neuroanatomy and change in behaviour related/relevant to adaptive 

behaviour (such as social-communication processing), we conducted supplementary analyses.  

To this aim, we also stratified individuals into outcome groups based on i) total Autism Diagnostic Observation 

Schedule (ADOS) (32) scores, ii) ADOS social affect domain scores, and iii) Social Responsiveness Scale 

(SRS) (33) scores. We selected these measures because, similarly to the VABS-II, they capture ASD core 

symptoms, especially in the social-communication domain. For each individual and measure, we computed 

change scores (between T1 and T2). We then standardized these scores and used a cut-off of 0.5 standard 

deviations (SD) to group individuals into those whose scores increased (VT2-VT1≥0.5 SD), did not change (-

0.5SD< VT2-VT1<0.5SD), and decreased (VT2-VT1≤-0.5SD). These cut-offs were chosen to balance participant 

numbers between outcome groups. They are preliminary and future studies should examine (the effect of) 

various thresholds. Next, for each measure, we tested if there were neuroanatomical differences at T1 between 

subgroups. ADOS and SRS scores are ‘reverse-coded’, i.e., an increase in score indicates a ‘worsening’ in 

symptoms. Here, we contrasted those individuals who improved in scores with those who deteriorated. To this 

aim, we ran GLM regression models computing the parameter estimates for CV/CT and SA at each vertex, 

using the respective outcome subgroups, sex, and site as fixed-effect factors; and linear (CV/CT/SA) and 

quadratic (CV/CT) age, IQ, total brain measures (total CV/SA, mean CT), and baseline symptom measures (T1 

ADOS total, T1 ADOS social affect domain, and T1 SRS score, respectively) as continuous covariates (as 

shown above in Analysis 1).  

 

Note that, while we focused on the abovementioned clinical measures (VABS-II, ADOS, SRS), future studies 

should expand our analyses to other assessments of (features related to) adaptive behaviour. Examples may 

include the Adaptive Behaviour Assessment System (ABAS) (34), the American Association for Mental 

Deficiency (AAMD) Adaptive Behaviour Scale (35), the Adaptive Social Behavior Inventory (ASBI) (36), or 

the Diagnostic Adaptive Behavior Scale (DABS) (37) (reviewed in (38)). 
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For the sake of completeness, we also examined neuroanatomical differences between neurotypicals and all 

ASD outcome groups combined. To this aim, we conducted supplementary GLM regression models computing 

the parameter estimates for CV/CT (Ci) and SA (SAi) at each vertex i including group (ASD vs TD), sex and 

site as fixed-effect factors; and linear and quadratic age (selected based on previous literature (26, 31)), IQ, and 

total brain measures (total CV/SA, mean CT) as continuous variables, i.e. Ci = β0 + β1Age + β2Age2 +
β3Group + β4Sex + β5IQ + β6Site + β7Total Brain + εi and SAi =  β0 + β1Age + β2Group + β3Sex +
β4IQ + β5Site + β6Total Brain + εi , where 𝜀𝑖 is the residual error at vertex i. We then examined the main 

effect of Group using the coefficients β3 (for CV and CT) and β2 (for SA).  

 

All main (and supplementary) steps of Analysis 1 were conducted using the SurfStat toolbox 

(https://www.math.mcgill.ca/keith/surfstat/) within MATLAB R2019a (The MathWorks, Inc., MA, US). 

 

Analysis 2: Computation of ‘Atypicality Indices’ (AIs) 

Second, we extended our analyses from the (sub)group-level to the individual level. We examined if, in the 

regions identified above, an individual’s deviation from the neurotypical neurodevelopmental trajectory at T1 

predicted that individual’s subsequent change in adaptive behaviour. To achieve this, we first used the data from 

the neurotypicals (without intellectual disability, ID) to create a general linear model of the neurotypical 

developmental trajectory of each vertex’ CV/CT/SA given a subject’s age, sex, IQ, site, and overall brain 

measures (see GLM above). Next, we applied this model to the ASD group. We included autistic individuals 

with and without ID; however, there were no differences in IQ/the occurrence of ID between subgroups, and we 

controlled for IQ in our analyses. We then measured how much each autistic individual deviated from the 

neurotypical trajectory. We centred and normalised these deviances (residuals) based on the neurotypical 

distribution to express all data in units of standard deviation from the neurotypical mean. We used the residuals 

to identify neuroanatomical ‘outliers’ (morphometric values outside the 90% neurotypical Prediction Interval 

[PI90%] at each vertex). Next, we summarized each individual’s outliers in an ‘Atypicality Index’ (AI). 

Specifically, we computed each individual’s degree of neuroanatomical deviation, i.e., the mean of the 

standardized residuals outside the PI90%, where deviations in both the positive and the negative direction are 

classified as atypical. We computed AIs separately for each subject and for each set of regions that differed in a 

morphometric feature in the previously described subgroup comparisons. We then tested if these regional AIs 

predicted change in adaptive behavior in ASD (Y) by running separate linear regressions for the different 

subgroup comparisons. Models were controlled for age, sex, IQ, site, and T1 ABC scores (VT1), i.e., Y =  β0 +
β1Age + β2Sex + β3IQ + β4Site + β5VT1 + β6AI CV + β7AI SA + β8AI CT. In sum, this allowed us to identify 

regional deviations from the neurotypical neurodevelopmental profile of a particular morphometric feature that 

predict change in adaptive behaviour in ASD at the individual level. We also recomputed these analyses while 

performing Bootstrapping (4000 iterations) to increase the accuracy of our estimates. 

 

All main (and supplementary) steps of Analysis 2 were conducted using the SurfStat toolbox 

(https://www.math.mcgill.ca/keith/surfstat/) within MATLAB R2019a (The MathWorks, Inc., MA, US); and R 

(R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. URL https://www.R-project.org/). 

 

 

Genetics: statistical analyses 

Gene expression decoding analyses 

We examined how our neuroanatomical findings may relate to underlying genomic mechanisms. This analysis 

(decoding analysis) was based on the Allen Human Brain Atlas (AHBA) (39). The AHBA is the most 

comprehensive gene-expression atlas currently available, but it is also based on adult donors only. Also, its 

spatial coverage and resolution are much lower than those of neuroimaging data. Consequently, future studies 

should repeat our decoding analysis using age-specific high-resolution gene expression datasets once they 

become available. Here, we leveraged the AHBA to highlight lists of genes that are highly expressed throughout 

the brain in spatial patterns that are similar to the observed neuroanatomical differences between the adaptive 

behavioural change subgroups. To this aim, we uploaded the cortical difference maps of the various subgroup 

contrasts to Neurovault (https://neurovault.org). Next, we used python code embedded within Neurovault and 

Neurosynth (https://neurosynth.org) to perform a gene expression decoding analysis that statistically tests all 

20,787 protein coding genes for spatial gene expression similarity to our imaging maps (40). Specifically, the 

analysis constructs a linear model for each of the six donor brains in the AHBA, where the slopes encode how 

similar each gene’s spatial expression pattern is to the input imaging map. In line with the input maps, these 

analyses are restricted to cortical tissue. The slopes are then subjected to a one-sample t-test to identify genes 

whose spatial expression patterns are consistently (across the donor brains) highly similar to the imaging maps. 

The resulting list of genes was thresholded at p<.001. We chose this ‘liberal’ threshold as this analysis did not 

https://www.math.mcgill.ca/keith/surfstat/
https://www.math.mcgill.ca/keith/surfstat/
https://neurovault.org/
https://neurosynth.org/
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constitute a hypothesis test per se, but rather was a selection step aimed at yielding an initial list of genes for the 

subsequent analyses. Given that both sides of our imaging contrasts were of equal relevance, we considered both 

positive and negative t-statistic values.  

 

Following the identification of these genes, we investigated i) their implication in ASD (gene enrichment 

analysis), ii) their functional roles and biological relevance (protein-protein interaction analysis), and iii) if 

variation in these genes correlated with neuroanatomical variability in our participants 

 

 

Gene enrichment analyses 

We examined if these identified genes may be implicated in ASD using R code written by M.V.L. 

(https://github.com/mvlombardo/utils/blob/master/genelistOverlap.R). Specifically, we tested our gene lists for 

enrichment with different classes of genes known to be associated with ASD at the genetic and transcriptomic 

level. At the genetic level, this included the 102 rare de novo protein truncating variants identified in the largest 

exome sequencing study of autism world-wide (41) (ASD dnPTVs). We also included an ASD-related gene list 

compiled by SFARI (ASD SFARI; categories S, 1, 2, & 3 downloaded on January 14th, 2020, from 

https://gene.sfari.org/). At the transcriptomic level, we included a list of differentially expressed 

(upregulated/downregulated) genes identified in autism post-mortem frontal and temporal cortex tissue (ASD 

DE Downreg, ASD DE Upreg) (42). From the same study, we also included a list of genes differentially 

expressed in schizophrenia and bipolar disorder (SCZ DE, and BD DE), as these conditions are somewhat 

genetically correlated with ASD (42). Additionally, we examined genes that are differentially expressed in ASD 

in specific cell types (ASD: Excitatory, Inhibitory, Microglia, Oligodendrocyte, Astrocyte, Endothelial) (43). 

Finally, we examined genes from differentially expressed co-expression modules in ASD (ASD CTX Downreg 

CoExpMods, ASD CTX Upreg CoExpMods) (44).  

 

First, we conducted our enrichment analyses using a background list of 20,787 genes, which are all genes 

considered in Neurosynth (https://neurosynth.org/). Second, to avoid biasing our findings towards genes 

expressed in brain, we limited our background list to 16,906 genes, based on real estimates of genes expressed 

in cortical tissue (45) (FigureS33). Our enrichment analyses yielded enrichment Odds Ratios, hypergeometric p-

values, and False Discovery Rate (FDR) q-values. Only those tests with pFDR<.05 were interpreted further.  

 

While other methods (e.g. Family-wise error rate Bonferroni etc.) tackle the multiple comparison problem by 

controlling the probability of making even one false discovery (and thus reduce power especially in the case of a 

large number of variables/endpoints), FDR correction aims to control the expected proportion of falsely rejected 

hypotheses and can thereby increase power (46). Accordingly, FDR correction has been widely used in previous 

studies conducting genetic enrichment analyses in ASD (47, 48). 

 

 

Protein-protein interaction analyses 

Next, to explore the functional roles and biological relevance of the identified genes, we conducted protein-

protein interaction (PPI) analyses to determine if these specific genes highly interact at the protein level. In other 

words, these PPI analyses assessed if the products of the identified genes are thought to interact physically to 

support biological processes – and, if so, which processes they are. This PPI analysis was implemented within 

STRING (https://string-db.org/). Our input gene list for this PPI analysis included the genes from the Increasers 

vs Decreasers CV and SA enrichment for ASD DE Downreg genes. To estimate evidence for PPI, we used only 

the seed genes and all default settings (e.g., minimum required interaction score=0.4, using all interaction 

sources). We also constructed an extended PPI network that included the seed genes plus up to 50 top 

interactors with these seed genes. From this extended network, we computed Gene Ontology (GO) biological 

process enrichment results and then selected and categorized terms passing pFDR<.05 that were of relevance to 

the cortical phenotypes (e.g., autophagy, cell cycle, cell death, growth, neurogenesis, and synapse). 

 

 

Polygenic scores 

We also tested if variation in the identified genes correlated with neuroanatomical variability in our participants, 

i.e., if single nucleotide polymorphisms (SNPs) in the genes identified in the gene-expression analyses above 

were related to neuroanatomical deviations from the neurotypical profile. To do that, within the LEAP cohort, 

we generated autism PGS restricted to common genetic variants in the previously identified sets of genes that 

were expressed in regions that differed neuroanatomically between subgroups.  

 

https://github.com/mvlombardo/utils/blob/master/genelistOverlap.R
https://gene.sfari.org/
https://neurosynth.org/
https://string-db.org/
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To this aim, genetic samples collected in LEAP were genotyped using the Infinium OmniExpress-24v1 

BeadChip. We excluded participants with a genotyping rate below 95%, heterozygosity above or below 3 SD 

from the mean, or a mismatch in reported and genetic sex. We further removed single SNPs that deviated from 

Hardy-Weinberg Equilibrium (p<1x10-6) and that had a genotyping rate below 95%. Imputation was conducted 

on the Michigan Imputation server. Given that the majority of individuals in LEAP were of European ancestry, 

we used the HRC r1.1 2016 reference panel. We generated principal components and, using the first genetic 

principal components, reduced their dimensionality to two components (x-umap-spread and y-umap-spread 

columns) (https://arxiv.org/abs/1802.03426). Density based-clustering on these clusters identified individuals of 

European ancestry. We only included unrelated individuals of European ancestries in our PGS analyses. Thus, 

we retained 153 subjects. 

 

PGS were generated in PRSice2 (49) using independent SNPs present in both the training set, i.e., the largest 

genome-wide association study (GWAS) of autism (50), and the testing dataset, i.e., the individuals that were 

genotyped in the LEAP cohort. PGS were calculated as weighted averages of the total number of trait-increasing 

alleles (for a particular phenotype) in an individual. The weights were derived from the GWAS regression betas 

in the training dataset. We clumped SNPs using an imputation r2 of 0.1 and a physical distance of 250 kb. We 

used the latest GWAS of autism (50) to generate PGS. We chose an a priori p-value threshold of p≤.1 as this 

explained the highest variance in autism (50). This resulted in a total of 50,122 SNPs.  

 

Next, we generated gene-set based PGS, i.e., to increase the signal-to-noise ratio we limited PGS to SNPs in 

specific sets of genes. Specifically, we restricted our PGS to SNPs in the genes we previously identified in our 

decoding analysis, i.e., those whose spatial expression patterns were significantly similar to the neuroanatomical 

subgroup differences. SNPs were mapped to genes based on physical positions of the genes included in the gene 

sets (hg19). These SNPs were then clumped, restricted to those with an a priori p-value threshold of p≤.1. In 

total, we generated seven gene set based analyses (the contrast for Increasers vs No-changers yielded a small 

number of genes, hence these results should be interpreted with caution). Gene numbers were as follows: IG vs 

DG CV: 97; IG vs DG SA: 363; IG vs DG CT: 42; IG vs NCG CV: 57; IG vs NCG SA: 11; DG vs NCG CV: 

33; DG vs NCG SA: 36. 

 

We tested the association between PGS and AIs for each set of regions differing between subgroups using 

Pearson correlation analyses, controlling for age, IQ, sex, site, and the first five genetic principal components 

(pFDR<.05). We also repeated our analyses using Bootstrapping (4000 iterations). This step was taken to increase 

the accuracy of our estimates. 

 

 

Results: Neuroanatomical differences between adaptive outcome groups 

Increasers and Decreasers differed in CV in eight clusters (Figure2a). CV was greater in Increasers vs 

Decreasers in clusters containing parts of the (1) right precuneus cortex, superior parietal cortex, and isthmus-

cingulate cortex; (2) right precuneus cortex, superior parietal cortex, and paracentral lobule; (3) right superior 

parietal cortex, supramarginal gyrus, and inferior parietal cortex; and (4) left entorhinal cortex. In contrast, CV 

was lower in Increasers vs Decreasers in clusters including the (5) right superior frontal gyrus; (6) right superior 

temporal gyrus and the banks of the superior temporal sulcus; (7) left lateral occipital cortex and inferior parietal 

cortex; and (8) right lateral occipital cortex. 

 

Also, Increasers and Decreasers differed in CT in three clusters (Figure2b). CT was greater in Increasers vs 

Decreasers in clusters including the (1) left insula, entorhinal cortex, inferior temporal gyrus, temporal pole, and 

superior temporal gyrus; and (2) right precuneus. CT was lower in Increasers vs Decreasers in a cluster 

encompassing the left lateral occipital cortex and fusiform gyrus.  

 

Moreover, Increasers and Decreasers differed in SA in five clusters (Figure2c). SA was greater in Increasers vs 

Decreasers in clusters including the (1) right postcentral gyrus, supramarginal gyrus, precentral gyrus, pars 

opercularis, insula, and rostral middle frontal gyrus; (2) right precuneus cortex, paracentral lobule, and superior 

parietal cortex; (3) left inferior temporal gyrus, fusiform gyrus, and parahippocampal gyrus; and (4) left 

supramarginal gyrus and postcentral gyrus. In contrast, SA was lower in Increasers vs Decreasers in a cluster 

containing the right lingual gyrus and isthmus-cingulate cortex.  

 

Increasers and No-changers differed in CV, which was larger in the Increasers vs No-changers in a cluster 

containing the right supramarginal gyrus and postcentral gyrus (Figure2d). Moreover, SA was significantly 

greater in the No-changers vs Increasers in two clusters containing the (1) right lingual gyrus, isthmus-cingulate 

https://arxiv.org/abs/1802.03426
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cortex, pericalcarine cortex, and parahippocampal gyrus; and (2) left lingual gyrus, lateral occipital cortex, 

pericalcarine cortex, cuneus cortex, and isthmus-cingulate cortex (Figure2e). Subgroups did not differ in CT.  

 

Decreasers and No-changers differed in CV in three clusters (Figure2f). CV was greater in Decreasers vs No-

changers in clusters including the (1) right posterior-cingulate cortex; (2) left superior frontal and rostral middle 

frontal gyrus; and (3) right superior frontal gyrus. Subgroups did not differ in CT. However, SA was greater in 

Decreasers vs No-changers in clusters including the (1) left superior parietal cortex and postcentral gyrus; and 

(2) left precuneus cortex, lingual gyrus, isthmus-cingulate cortex, and pericalcarine cortex (Figure2g).  
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Figure S1 Adaptive behaviour measured using the Vineland-II scale. Middle: Vineland scores at timepoint 1 (T1) 

plotted against the change in Vineland scores (VT2-VT1) between T1 and timepoint 2 (T2). Changes of 4 units are 

marked in grey. Top: Histogram of Vineland scores at T1. Right: Histogram of Vineland change scores. Adaptive 

outcome subgroups are indicated through different colours: decrease group (DG) = orange, increase group (IG) 

= green, no change group (NCG) = blue. 
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Figure S2 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and Decreasers. Each row displays random field theory (RFT)-corrected t-values on the left and 

unthresholded t-values on the right. Abbreviations: A, anterior view; L, left; R, right. 
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Figure S3 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers, No-changers, and Decreasers. Each row displays random field theory (RFT)-corrected t-values on 

the left and unthresholded t-values on the right. Abbreviations: A, anterior view; L, left; R, right. 
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Figure S4 Effect sizes (Cohen’s d) of neuroanatomical differences in cortical volume, cortical thickness, and 

surface area between Increasers, No-changers, and Decreasers. Effect sizes are indicated by the colorbar. 

Positive/negative values indicate a positive/negative effect in terms of the contrasts indicated in the subheadings. 

*Cohen’s d range = [-0.2, 0.2], instead of [-0.5, 0.5]. Abbreviations: A, anterior view; CT, cortical thickness; 

CV, cortical volume; L, left; R, right; SA, surface area. 
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Figure S5 Effect sizes (Cohen’s f) of each model term in the Increasers vs Decreasers contrast (cortical volume). Effect sizes are indicated by the colorbar. 
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Figure S6 Effect sizes (Cohen’s f) of each model term in the Increasers vs Decreasers contrast (surface area). Effect sizes are indicated by the colorbar. 
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Figure S7 Effect sizes (Cohen’s f) of each model term in the Increasers vs Decreasers contrast (cortical thickness). Effect sizes are indicated by the colorbar. 
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Figure S8 Effect sizes (Cohen’s f) of each model term in the Increasers vs No-changers contrast (cortical volume). Effect sizes are indicated by the colorbar. 
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Figure S9 Effect sizes (Cohen’s f) of each model term in the Increasers vs No-changers contrast (surface area). Effect sizes are indicated by the colorbar. 
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Figure S10 Effect sizes (Cohen’s f) of each model term in the Decreasers vs No-changers contrast (cortical volume). Effect sizes are indicated by the colorbar. 

 



Page 23 of 49 

Figure S11 Effect sizes (Cohen’s f) of each model term in the Decreasers vs No-changers contrast (surface area). Effect sizes are indicated by the colorbar. 
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Figure S12 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and Decreasers using varying statistical thresholds. Each row displays random field theory (RFT)-

corrected t-values using a cluster-defining threshold of 0.01 and a cluster p-value threshold of 0.05 on the left; 

and a cluster-defining threshold of 0.001 and a cluster p-value threshold of 0.05 on the right. Abbreviations: L, 

left; R, right. 
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Figure S13 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and No-changers. Each row displays random field theory (RFT)-corrected t-values using a cluster-

defining threshold of 0.01 and a cluster p-value threshold of 0.05 on the left; and a cluster-defining threshold of 

0.001 and a cluster p-value threshold of 0.05 on the right. Abbreviations: L, left; R, right. 

 



Page 26 of 49 

Figure S14 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Decreasers and No-changers. Each row displays random field theory (RFT)-corrected t-values using a cluster-

defining threshold of 0.01 and a cluster p-value threshold of 0.05 on the left; and a cluster-defining threshold of 

0.001 and a cluster p-value threshold of 0.05 on the right. Abbreviations: L, left; R, right. 
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Figure S15 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and Decreasers while covarying (left column) and not covarying (right column) for total brain. Each 

row displays random field theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, 

anterior view; L, left; R, right. 
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Figure S16 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and No-changers while covarying (left column) and not covarying (right column) for total brain. Each 

row displays random field theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, 

anterior view; L, left; R, right. 
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Figure S17 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Decreasers and No-changers while covarying (left column) and not covarying (right column) for total brain. Each 

row displays random field theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, 

anterior view; L, left; R, right. 
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Figure S18 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and Decreasers controlling for site using fixed-effect modelling (left column), ComBat batch 

harmonization (middle column), and random effect modelling (right column). Each row displays random field 

theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, anterior view; L, left; R, 

right. 
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Figure S19 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and No-changers controlling for site using fixed-effect modelling (left column), ComBat batch 

harmonization (middle column), and random effect modelling (right column). Each row displays random field 

theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, anterior view; L, left; R, 

right. 
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Figure S20 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Decreasers and No-changers controlling for site using fixed-effect modelling (left column), ComBat batch 

harmonization (middle column), and random effect modelling (right column). Each row displays random field 

theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, anterior view; L, left; R, 

right. 
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Figure S21 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and Decreasers not covarying for (left column) and covarying for (right column) medication. Each 

row displays random field theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, 

anterior view; L, left; R, right. 
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Figure S22 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and No-changers not covarying for (left column) and covarying for (right column) medication. Each 

row displays random field theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, 

anterior view; L, left; R, right. 

 



Page 35 of 49 

 
Figure S23 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Decreasers and No-changers not covarying for (left column) and covarying for (right column) medication. Each 

row displays random field theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, 

anterior view; L, left; R, right. 
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Figure S24 Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers, No-changers, and Decreasers not covarying for intelligence quotient (IQ). Each row displays random 

field theory (RFT)-corrected t-values, as indicated through the colorbar. Abbreviations: A, anterior view; L, left; 

R, right. 
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Figure S25 Main effect of change in adaptive behaviour on neuroanatomy. Cortical volume: effects observed in 

inferior parietal cortex. Surface area: effects in inferior parietal cortex, superior parietal cortex, precuneus 

cortex, superior frontal gyrus, medial orbital frontal cortex, lingual gyrus, and parahippocampal gyrus. Cortical 

thickness: effects in precentral gyrus, posterior cingulate cortex, superior temporal gyrus, middle temporal gyrus, 

and the banks of the superior temporal sulcus. T-values are random field theory (RFT)-corrected and indicated 

by colorbars.  
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Figure S26 Main effect of outcome group on neuroanatomy. Cortical volume: effects observed in frontal cortex. 

Surface area: effects found in posterior temporal cortex. Cortical thickness: effects in anterior temporal cortex. 

Left column: T-values are random field theory (RFT)-corrected. Right column: uncorrected T-values. 

Abbreviations: L, left; R, right. 
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Figure S27 Neuroanatomical baseline differences between adaptive outcome groups additionally controlling for 

follow-up duration and its interaction with age. a-c: differences between Increasers and Decreasers in cortical 

volume (a), cortical thickness (b) and surface area (c). d-e: differences between Increasers No-changers in 

cortical volume (d) and surface area (e). f-g: differences between Decreasers and No-changers in cortical volume 

(f) and surface area (g). T-values are random field theory (RFT)-corrected and indicated by colorbars. 

Abbreviations: A, anterior view; CT, cortical thickness; CV, cortical volume; L, left; R, right; SA, surface area. 
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Figure S28 Neuroanatomical baseline differences between adaptive outcome groups in a subsample matched for 

age, sex, and IQ (n=83). a-c: differences between Increasers and Decreasers in cortical volume (a), cortical 

thickness (b) and surface area (c). d-e: differences between Increasers and No-changers in cortical volume (d) 

and surface area (e). f-g: differences between Decreasers and No-changers in cortical volume (f) and surface 

area (g). T-values are random field theory (RFT)-corrected and indicated by colorbars. Abbreviations: A, anterior 

view; CT, cortical thickness; CV, cortical volume; L, left; R, right; SA, surface area. 
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Figure S29  Neuroanatomical differences in cortical volume, cortical thickness, and surface area between 

Increasers and Decreasers. a-c: analyses within individuals across age (n=142). b: analyses within children and 

adolescents (6-17 years of age, n=76). c: analyses within adults (18-30 years of age, n=66). T-values are random 

field theory (RFT)-corrected and indicated by colorbars. Abbreviations: L, left; R, right. 
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Figure S30 Neuroanatomical baseline differences in cortical volume, surface area, and cortical thickness between 

outcome groups based on different symptom/behaviour measures. a: differences between those individuals whose 

adaptive behavioural scores increased/improved (n=78) and decreased/deteriorated (n=64). b: differences 

between individuals whose ADOS total scores decreased/improved (n=36) vs increased/deteriorated (n=42). c: 

differences between individuals whose ADOS social affect domain scores decreased/improved (n=39) vs 

increased/deteriorated (n=37). d: differences between individuals whose SRS scores decreased/improved (n=30) 

vs increased/deteriorated (n=29). Numbers below images indicate Pearson correlation coefficients 

(r=correlation coefficient, p=p-value) of each map with the corresponding map in row A. T-values are 

unthresholded and indicated by colorbars. Abbreviations: L, left; R, right. 
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Figure S31  Neuroanatomical differences between all outcome groups combined (ASD) and the neurotypicals. 

Cortical volume: effects observed e.g., in anterior cingulate cortex. Surface area: effects seen in anterior cingulate 

cortex, insula, inferior/middle frontal gyrus, and orbital frontal cortex. Left column: T-values are random field 

theory (RFT)-corrected. Right column: uncorrected T-values. 
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Figure S32 Genetic correlates of neuroanatomical variability (effect sizes). a: Enrichment analyses for cortical 

phenotypes (y-axis, rows) by ASD-associated gene lists (x-axis, columns). Tile colours indicate FDR q-values. 

Tile labels indicate enrichment effect sizes (Cohen’s d), and significant values are marked with an asterisk. 

Negative values indicate un-enrichment/lessening of enrichment. Abbreviations: CT, cortical thickness; CV, 

cortical volume; DG, decrease group; IG, increase group; NCG, no change group; SA, surface area.  
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Figure S33 Enrichment analyses for cortical phenotypes (y-axis, rows) by ASD-associated gene lists (x-axis, 

columns) using a more restricted gene background list of 16,906 genes expressed in cortical tissue (vs 20,787 

genes in the original analysis). Tile colours indicate FDR q-values. Tile labels indicate enrichment odd ratios, 

and significant values are marked with an asterisk. Abbreviations: CT, cortical thickness; CV, cortical volume; 

DG, decrease group; IG, increase group; NCG, no change group; SA, surface area. 
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Supplementary Tables 

 

 

Table S1 Summary of image acquisition parameters used at each study site. Please note that all scanners operated at 3 Tesla. Abbreviations: FA, flip angle; FOV, field of 

view; TE, echo time; TR, repetition time. 

Site Manufacturer Model Software version Acquisition 

sequence 

Slices TR 

[s] 

TE 

[ms] 

FA 

[˚] 

Coverage Thickness 

[mm] 

Resolution 

[mm3] 

FOV 

Cambridge Siemens Verio Syngo MR B17 Tfl3d1_ns 176 

 

2.3 2.95 9 

256*256 

 

1.2 

 

1.1*1.1*1.2 

 

270 

 

KCL GE Medical 

systems 

Discovery 

mr750 

LX MR 

DV23.1_V02_1317.c 

SAG ADNI GO 

ACC SPGR 

196 7.31 3.02 11 

Mannheim Siemens TimTrio Syngo MR B17 MPRAGE ADNI 176 2.3 2.93 9 

Nijmegen Siemens Skyra Syngo MR D13 Tfl3d1_16ns 176 2.3 2.93 9 

Rome GE Medical 

systems 

Signa HDxt 24/LX/MR 

HD16.0_V02_1131.a 

SAG ADNI GO 

ACC SPGR 

172 5.96 1.76 11 

Utrecht Philips Medical 

Systems 

Achieva/ 

Ingenia CX 

3.2.3/3.2.3.1/ 

5.1.9/5.1.9.1 

ADNI GO 2 170 6.76 3.1 9 
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Table S2 Predicting clinical outcome (VT2-VT1) using the Atypicality Index (AI). Significantly contributing 

neuroanatomical factors are highlighted in bold. Abbreviations: b, unstandardized beta; , standardized beta; 

CT, cortical thickness; CV, cortical volume; DG, Decrease group; FSIQ, full-scale IQ; IG, Increase group; NCG, 

No-change group; SA, surface area; SE, standard error; VT1, Vineland composite score at timepoint 1 (baseline). 

VT2-VT1Vineland composite score (N = 204) 

Predicted measure Predictors b SE  t-value Probability 

IG vs DG 

R=.422, R2=.178, 

R2
adj=.144, 

F(8,195)=5.266, 

p=.000 

(constant) 2.018 5.97  0.34 0.736 

Age (yrs) -0.07 0.13 -0.04 -0.59 0.556 

FSIQ 0.13 0.04 0.25 3.27 0.001 

Sex 2.00 1.46 0.09 1.38 0.171 

Site 1.28 0.49 0.20 2.63 0.009 

VT1 -0.28 0.06 -0.34 -4.33 0.000 

AI CV -5.35 2.01 -0.30 -2.66 0.008 

AI SA 7.16 1.76 0.44 4.06 0.000 

AI CT 2.91 1.49 0.15 1.95 0.053 

IG vs NCG 

R=.361, R2=.130, 

R2
adj=.099, 

F(7,196)=4.184, 

p=.000 

(constant) 1.40 6.09  0.23 0.818 

Age (yrs) -0.12 0.13 -0.07 -0.95 0.344 

FSIQ 0.15 0.04 0.29 3.79 0.000 

Sex 1.05 1.49 0.05 0.71 0.481 

Site 1.19 0.48 0.18 2.51 0.013 

VT1 -0.26 0.07 -0.33 -4.04 0.000 

AI CV 1.75 0.72 0.17 2.44 0.016 

AI SA -0.61 0.87 -0.05 -0.71 0.482 

DG vs NCG 

R=.378, R2=.143, 

R2
adj=.112, 

F(7,196)=4.672, 

p=.000 

(constant) 1.39 6.05  0.23 0.818 

Age (yrs) -0.07 0.13 -0.04 -0.55 0.581 

FSIQ 0.14 0.04 0.26 3.50 0.001 

Sex 1.34 1.47 0.06 0.92 0.361 

Site 1.05 0.47 0.16 2.24 0.026 

VT1 -0.26 0.07 -0.32 -4.02 0.000 

AI CV -1.57 0.88 -0.14 -1.78 0.076 

AI SA 3.76 1.26 0.22 2.97 0.003 
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Table S3 Predicting clinical outcome (VT2-VT1) using the Atypicality Index (AI) using Bootstrapping (4000 

iterations). Significantly contributing neuroanatomical factors are highlighted in bold. Abbreviations: b, 

unstandardized beta; c, cluster; CT, cortical thickness; CV, cortical volume; DG, Decrease group; FSIQ, full-

scale IQ; IG, Increase group; NCG, No-change group; SA, surface area; SE, standard error; VT1, Vineland 

composite score at timepoint 1 (baseline). 

 
VT2-VT1Vineland composite score (N = 204) 

Predicted measure Predictors b Bias SE 
Bootstrap 

p-value 

95% Confidence 

Interval 

lower upper 

IG vs DG 

R=.422, R2=.178, 

R2
adj=.144, 

F(8,195)=5.266, 

p=.000, 

standard error of 

estimate: 9.361 

(constant) 2.018 -.222 5.97 .719 -9.052 12.494 

Age (yrs) -0.07 .005 0.13 .576 -.327 .191 

FSIQ 0.13 .000 0.04 .001 .061 .199 

Sex 2.00 -.015 1.46 .190 -.906 4.873 

Site 1.28 .002 0.49 .013 .310 2.294 

VT1 -0.28 .003 0.06 .001 -.391 -.147 

AI CV -5.35 -.020 2.01 .018 -9.966 -1.085 

AI SA 7.16 -0.17 1.76 .001 3.791 10.810 

AI CT 2.91 -0.14 1.49 .046 .162 5.824 

IG vs NCG 

R=.361, R2=.130, 

R2
adj=.099, 

F(7,196)=4.184, 

p=.000, 

standard error of 

estimate: 9.557  

(constant) 1.40 -.177 6.09 .793 -9.445 11.510 

Age (yrs) -0.12 .003 0.13 .350 -.377 .148 

FSIQ 0.15 .000 0.04 .000 .076 .220 

Sex 1.05 -.017 1.49 .509 -2.045 4.074 

Site 1.19 .011 0.48 .014 .304 2.176 

VT1 -0.26 .002 0.07 .000 -.379 -.132 

AI CV 1.75 -.022 0.72 .008 .433 2.982 

AI SA -0.61 -.017 0.87 .419 -2.102 .785 

DG vs NCG 

R=.378, R2=.143, 

R2
adj=.112, 

F(7,196)=4.672, 

p=.000,  

standard error of 

estimate: 9.486 

(constant) 1.39 -.068 6.05 .820 -10.303 12.584 

Age (yrs) -0.07 .005 0.13 .576 -.322 .190 

FSIQ 0.14 -.002 0.04 .001 .062 .205 

Sex 1.34 .037 1.47 .383 -1.533 4.379 

Site 1.05 -.010 0.47 .024 .145 1.927 

VT1 -0.26 .003 0.07 .000 -.379 -.136 

AI CV -1.57 .013 0.88 .156 -3.721 .529 

AI SA 3.76 -.074 1.26 .003 1.263 6.085 
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Table S4 Medication information for all participants included in this study.  

Diagnostic 

group 

Unknown 

% (n) 

No 

% (n) 

Yes 

% (n) 

Medication and Categories  

ASD  

(n = 204) 

29% (60) 31% (63) 40% (81) 

 

One: n=81 

Two: n=25 

Three: n=3 

Antidepressant (n=22) 

• 19 Selective serotonin reuptake inhibitor (SSRI) 

• 2 Tetracyclic antidepressant (TeCA) 

• 1 Tricyclic Antidepressant (TCA) 

 

Antiepileptics (n=6; no additional information) 

 

Antimigraine preparations (n=4; no additional 

information) 

 

Antipsychotics (n=14) 

• 4 Aripiprazole 

• 1 Clozapine 

• 1 Pipamperone 

• 8 Risperidone 

 

Anxiolytics (n=2; no additional information) 

 

Hypnotics and sedatives (n=28) 

• 28 Melatonin 

 

Other analgesics and antipyretics (n=4) 

• 4 Other analgesics and antipyretics 

 

Psychostimulants and other drugs used to treat 

ADHD (n=29) 

• 3 Atomoxtine 

• 1 Dexamfetamine 

• 25 Methylphenidate hydrochloride 

Neurotypicals 

(n = 279) 

56% (155) 37% 

(103) 

8% (21) 

 

One: n=21 

Two: n=4 

Three: n=1 

 

Antidepressant (n=4) 

• 3 Selective serotonin reuptake inhibitor (SSRI) 

• 1 Tetracyclic antidepressant (TeCA) 

 

Antiepileptics (n=2; no additional information) 

 

Anxiolytics (n=1; no additional information) 

 

Drugs used in addictive disorder (n=1; no additional 

information) 

 

Hypnotics and sedatives (n=3) 

• 3 Melatonin 

 

Other analgesics and antipyretics (n=5) 

• 1 Opioids 

• 4 Other analgesic and antipyretics 

 

Psychostimulants and other drugs used to treat 

ADHD (n=10) 

• 2 Atomoxetine 

• 8 Methylphenidate hydrochloride 

 

 


