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Data supplement for Garrison et al., Transdiagnostic Connectome-Based Prediction of 
Craving. Am J Psychiatry (doi: 10.1176/appi.ajp.21121207) 
 

 

 

 

Supplementary Methods 

Participants 

Data were included from several prior studies (1-6) utilizing a personalized 

guided imagery task during fMRI. Other than alcohol and cocaine use disorder 

subgroups, no other participants met criteria for current Axis I disorder including 

substance use disorders. Adult controls included a subgroup of social drinkers used for 

comparison in the earlier study of alcohol use disorder. Of the sample, 52% were White, 

37% were Black or African American, 4% were Asian, 4% were biracial, 1% were other 

race, and 2% were unknown race. All participants were free of significant neurological 

or psychiatric disorders or medical conditions. Additional exclusion criteria included 

inability to read and write in English, use of psychotropic medications, history of head 

trauma, pregnancy, claustrophobia or metal in body incompatible with MRI. For more 

detailed participant characteristics, see the original reports (1-6). 

Personalized guided imagery paradigm  

During fMRI, participants were presented with six personalized guided imagery 

scripts: two appetitive, two stress, and two neutral-relaxing. For the appetitive condition, 

in the substance use-related group, individuals with alcohol use disorder were 

presented with alcohol cue scripts, those with cocaine use disorder were presented with 



Page 2 of 20 

cocaine cue scripts, and those with obesity or prenatal cocaine exposure were 

presented with favorite-food cue scripts. In the control group, adult social drinkers were 

presented with alcohol cue scripts, and all other controls were presented with favorite-

food cue scripts. Standardized structured interviews were conducted using the Scene 

Development Questionnaire (7) to develop personally tailored scripts (7-9). Appetitive 

scripts were based on participants’ experiences of substance (i.e., drug, alcohol, food) 

anticipation and consumption (e.g., birthday celebration, meeting friends at a bar; pizza, 

ice cream). Stress scripts were based on experiences that made them “sad, mad or 

upset in that moment and they could do nothing to change it” (e.g., death in the family, 

romantic break-up). Appetitive and stress scripts were calibrated to ensure equivalent 

emotional valence across participants. Neutral-relaxing scripts were based on 

experiences of neutral or relaxing situations (e.g., sitting in the park). 

Imagery scripts were presented in a blocked design with 5.5min blocks, each 

comprised of a 1.5min baseline, followed by a 2.5min imagery script, and a 1min 

recovery. During baseline, participants were instructed to lay still and not do anything. 

During recovery, they were instructed to stop imagining and lay still for another minute. 

The order of imagery conditions was randomized and counterbalanced, with no 

condition repeated consecutively, and each script presented only once. Following each 

block, participants took part in 2min of progressive relaxation, where they were 

instructed to relax muscles in each part of the body (i.e., to relax physiological muscle 

tension rather than mental relaxation).  

Before and after each imagery script, participants rated their craving (as 

described in the manuscript) and anxiety on verbal analog scales from 1 “not at all” to 
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10 “more than ever” or “extremely high.” Anxiety ratings indicated how “tense, anxious 

and/or jittery” they felt. Participants also rated imagery vividness by indicating how well 

they were able to visualize each of their individual scripts. Heart rate was monitored 

during fMRI using a pulse oximeter. Each subsequent imagery block began only once 

participants’ heart rate and subjective ratings had returned to baseline. 

All images were collected at the Yale Magnetic Resonance Research Center 

using a 3T Siemens Trio MRI system. Participants in studies with food cues were asked 

to eat ~2h prior to scanning so that they were neither too full nor hungry (1, 2, 7). 

Individuals with cocaine use disorder were abstinent for at least 2 weeks prior to 

scanning (3). All participants were asked not to consume alcohol for 72h prior to 

scanning (4) and those with alcohol use disorder had been abstinent for 4-8 weeks (5). 

Image acquisition 

All images were collected at the Yale Magnetic Resonance Research Center 

using a 3T Siemens Trio MRI system equipped with a standard quadrature head coil. 

Images were acquired as follows, except where noted in the original manuscripts (1-6). 

Functional images were acquired using a single‐shot gradient echo‐planar imaging 

sequence (EPI) with 32 axial slices parallel to the AC‐PC line covering the whole brain 

(TR = 2000 ms, TE = 25 ms, bandwidth = 2005 Hz/pixel, flip angle = 85°, FOV = 220 × 

220 mm, matrix = 64 × 64, 32 slices with slice thickness = 4 mm and no gap, 150 

measurements. Anatomical images of slice locations were acquired using a spin-echo 

sequence in the axial plane parallel to the AC-PC line with TR = 300 msec, TE = 2.46 

msec, bandwidth = 310 Hz/pixel, flip angle = 60°, field of view = 220 x 220 mm, matrix = 

256 x 256, 32 slices with slice thickness = 4mm and no gap. Anatomical images were 
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acquired using a sagittal high-resolution T1-weighted 3D magnetization-prepared-rapid-

gradient-echo (MPRAGE) sequence with TR = 2530 ms; TE = 3.34 ms; bandwidth = 

180 Hz/pixel; flip angle = 7°; slice thickness = 1mm; field-of-view = 256 × 256 mm; 

matrix = 256 x 256).  

Connectivity processing  

Functional images were motion corrected using SPM12. All further analyses 

were performed using BioImage Suite (8) unless otherwise specified. Several covariates 

of no interest were regressed from the data including linear and quadratic drifts, mean 

cerebral-spinal-fluid (CSF) signal, mean white-matter signal, and mean gray matter 

signal. For additional control of possible motion-related confounds, a 24-parameter 

motion model (including six rigid-body motion parameters, six temporal derivatives, and 

these terms squared) was regressed from the data. The data were temporally smoothed 

with a Gaussian filter (approximate cutoff frequency=0.12Hz).  

Construction of connectomes 

Nodes were defined using the Shen 268-node brain atlas, which includes the 

cortex, subcortex, and cerebellum as described in prior CPM work (9). If a node was 

missing from any individual due to incomplete brain coverage, we excluded that node 

from the analysis. In total, twenty-one nodes located in the brain stem, inferior 

cerebellum, temporal pole, and inferior orbital frontal lobe (Figure S1) were removed 

from analysis. These nodes were primarily in the cerebellum and brain stem. The atlas 

was warped from MNI space into single-subject space via series of linear and non-linear 

transformations (10). Task connectivity was calculated on the basis of the ‘raw’ task 

time courses, with no regression of task-evoked activity, which emphasizes individual 
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differences in connectivity. This involved computation of the mean time courses for each 

of the 268 nodes (i.e., averaging the time courses of all constituent voxels). Node-by-

node pairwise correlations were computed, and Pearson correlation coefficients were 

Fisher z-transformed to yield symmetric 268x268 connectivity matrices, in which each 

element of the matrix represents the connectivity strength between two individual nodes 

(i.e., ‘edge’). 

Assessing prediction performance 

 As described in brief in the manuscript, for the 10-fold cross-validation analyses, 

model performance was evaluated with a cross-validated coefficient of determination, 

labeled q2: q2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦)2𝑛
𝑖=1

, where 𝑦𝑖
 is the 𝑖𝑡ℎ observed value, 𝑦̂𝑖 is the 𝑖𝑡ℎ predicted 

value, and 𝑦 is the average of observed values. In the text, the median q2 for 100 

random 10-fold divisions is reported. For convenience, Pearson’s correlation (r), 

Spearman’s rank correlation (), and mean square error (MSE; defined as: 𝑀𝑆𝐸 =

√(1
𝑛⁄ ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

{𝑖=1} ) are also reported. To assess significance of q2, permutation 

testing was used, where the correspondence between behavioral variables and 

connectivity matrices were randomly shuffled 1,000 times and the CPM analysis was re-

run with the shuffled data to generate null distributions of √𝑅𝐶𝑉
2 . Based on these null 

distributions, the p-values for predictions were calculated as: 

p=(#[ρ_null>ρ_median]+1)⁄1001, where #[ρ_null>ρ_median] indicates the number of 

permutated predictions numerically greater than the median of the un-permutated 

predictions. As only a positive association between predicted and actual values can 

indicate prediction above chance levels, one-tailed p-values are reported. In other 
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words, negative associations (even large effect size) indicate a failure to predict and 

accordingly are not tested for significance. 

Virtual lesion analysis 

CPM predictive networks are typically widespread and complex, so we 

conducted a virtual lesion analysis. For a CPM-based virtual lesion analysis, predictive 

networks can be set to zero to examine the degradation in predictive performance 

attributed to a virtual lesion of that network (11, 12). We conducted two versions of 

virtual lesion analysis. First, we iteratively set each functional network to zero and 

examined how this impacted the model performance. We conducted this virtual lesion 

analysis for the canonical functional networks: medial frontal (MF), frontoparietal (FP), 

default mode (DMN), motor (MOT), visual I (VI), visual II (VII), visual association (VA), 

salience (SAL), subcortical (SC), and cerebellum (CBL). Second, we analyzed with only 

leaving the connectivity values “unlesioned” for each network and setting the rest of the 

connectivity matrix to zero to examine the predictive performance of each network in 

isolation.  

Quantification of task and anatomical contribution to prediction 

Predictive networks identified using CPM are complex and composed of multiple 

brain regions and networks. To quantify the contribution of each edge to a given 

predictive model, we calculated the 𝑘𝑡ℎ edge’s weight for 𝑚𝑡ℎ task (labeled 𝑊𝑘,𝑚) to the 

model as: 𝑊𝑘,𝑚 = 𝑩(𝑘, 𝑚)𝑎𝑏𝑠(𝛽𝑚
𝑘 )𝑠𝑡𝑑(𝑬𝑘(: , 𝑚)), where 𝑩(𝑘, 𝑚)indexes whether the 

𝑘𝑡ℎ edge is selected from the 𝑚𝑡ℎ task, 𝑠𝑡𝑑(𝑬𝑘(: , 𝑚)) represents the standard deviation 

of the 𝑘𝑡ℎ edge in the 𝑚𝑡ℎ task, and 𝛽𝑚
𝑘 

represents the weight learned by CPM for the 

𝑘𝑡ℎ  edge in the 𝑚𝑡ℎ task. To quantify the contribution of each node to a given predictive 
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model, we calculated the 𝑛𝑡ℎ node’s weight summed across all tasks and edges 

(labeled 𝑊𝑛) to the model as: 𝑊𝑛 = ∑ ∑ 𝑊𝑘,𝑚
3
𝑚=1

35,778
𝑘=1 , for all 𝑘 edges connected to the 

𝑛𝑡ℎ node. Next, for the network level, 𝑊𝑘,𝑚 was averaged over each edge within or 

between canonical functional networks, based on the functional networks presented in 

(13). Finally, we quantified the contribution of each task as: 𝑊𝑛 = ∑ 𝑊𝑘,𝑚
35,778
𝑘=1 . To 

increase interpretablility, 𝑊𝑚 are then normalized to have sum of 1, ∑ 𝑊𝑚
3
𝑚=1 = 1 , so 

that it represents each task’s proportional contribution in the model. 

Anatomical localization of group differences in connectomes 

To measure group differences in task connectomes (i.e., appetitive, stress, 

neutral-relaxing connectomes) between the substance use-related and control groups, 

mass univariate, edge-wise analyses was used, and multiple comparisons were 

controlled using the Network-Based Statistic (NBS) (14). For each edge, connectivity 

strength from each task-based connectome is included in a two-tailed t-test resulting in 

a node-by-node matrix of t-values that represent the magnitude of differences across 

groups. This procedure was performed independently for each task-based connectome. 

One-thousand iterations and an initial t-value threshold of 2.595 were used for NBS. 

Results at p<0.0167 (0.05/3) were considered significant. For the comparisons with the 

predictive modeling results, node contributions were quantified at the sum of all 

significant edges for a node. Edges showing greater and weaker connectivity between 

groups were summarized independently. In addition, results were also summarized 

across all task connectomes by creating the union of all significant edges from each 

task connectome, and summarizing node contribution as above.  
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Model overlap 

To assess the overlap between the transdiagnostic, predictive model of craving 

and group differences in connectomes, the node-level contributions were correlated 

between predictive models and group difference results.  

Code and model availability 

Matlab scripts to run the main CPM analyses can be found at 

https://github.com/YaleMRRC/CPM/tree/master/matlab/func/misc. BioImage Suite tools 

used for analysis and visualization can be accessed at www.bisweb.yale.edu. Models 

are shared at https://www.nitrc.org/projects/bioimagesuite/.  

 

 

 

 

FIGURE S1. Spatial location of nodes removed from analysis due to incomplete slice 
coverage across subjects (green). These twenty-one nodes were located in the brain 
stem, inferior cerebellum, temporal pole, and inferior orbital frontal lobe. These nodes 
were primarily in the cerebellum and brain stem.  
 

  

https://www.nitrc.org/projects/bioimagesuite/
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Supplementary Results 

Self-reported craving 

Craving ratings for the substance use-related group and the control group are 

presented in Table S1. For all conditions, the substance use-related group reported 

higher craving compared to the control group (appetitive: t=3.32, p=0.001, df= 296.17; 

stress: t=4.00, p<0.001, df= 293.07; neutral-relaxing: t=3.49, p<0.001, df= 278.71). In 

the appetitive and stress conditions, craving ratings after the task were greater than 

craving ratings before the task (appetitive: t=6.00, p<0.001, df= 257.05; stress: t=2.65, 

p=0.009, df=261.81). There were no significant group-by-time interactions. All models 

included gender and age as covariates. Craving ratings from the substance use-related 

group exhibited greater variance than craving ratings from the control group (Bartlett c2= 

53.3, p<0.001, df=3). Craving ratings were highly correlated within and across imagery 

conditions (r’s>0.86, p’s<0.001, df=272). These correlations were similar for the 

substance use-related (r’s>0.85, p’s<0.001, df=124) and control groups (r’s>0.86, 

p’s<0.001, df=146), independently. Finally, the alpha reliability of craving response 

within subjects and across participants was α = .9835. 

Alternative models 

Potential differences in prediction performance between craving rated before and 

after the imagery conditions were tested (Table S2). Notably, prediction of craving 

measured before the imagery conditions was significantly better than prediction of 

craving measured after the imagery conditions when using either the 1st principal 

component (z=3.43, p<0.001) or the mean craving (z=2.14, p=0.032).  
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We investigated whether the multidimensional approach of combining 

connectomes and craving ratings from multiple imagery conditions produced better 

predictions over using a single imagery condition and craving rating (Table S3). In all 

cases, prediction using a single imagery condition and craving rating was significantly 

worse than the multidimensional model (appetitive: z=10.85, p<0.001; stress: z=10.59, 

p<0.001; neutral-relaxing: z=4.50, p<0.001).  

Finally, instead of using each task connectome as features for prediction, we 

simply averaged the three connectomes together results in a single connectome per 

participant. Prediction performance remained high, but worse than our original model.  

Prediction residuals for each group 

 In a post-hoc manner, we explored if there were any group differences in the 

residuals of prediction performance (i.e., whether prediction was driven by one group 

over the other). The control group compared to the substance use-related group 

showed lower r,  and q2 but also a lower mean square error (MSE) (control group: 

r=0.25, =0.15, q2=0.06, MSE=28.65; substance use-related group: r=0.52, =0.56, 

q2=0.20, MSE=39.87). Overall, these differences are in line with the group differences in 

spread and mean of the craving values (Table S1). The control group has less variance 

in craving, which will lead to a smaller correlation between predicted and observed 

craving, and lower mean craving, which will lead to a smaller mean square error. 

Regardless of these numerical differences, predictions are strong in each group.  

Predictions without performing global signal regression 

 As there is the potential for widespread activation from neural response to drug 

cues, which might contaminate the global signal, we repeated the main analyses 
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without performing global signal regression. Overall, prediction results were similar 

(r=0.35, =0.40, q2=0.15, MSE=33.67), suggesting that group differences in global 

signal were not driving the prediction performance.  

Gender-related differences in predictions of craving  

Based on putative sex/gender differences in the neural substrates of craving 

(e.g., 3), we investigated whether gender moderated the prediction of craving. The CPM 

analysis was repeated in each gender independently. Prediction performance was 

numerically higher but not significantly different in women compared to men (women: 

r=0.38, =0.35, q2=0.13, MSE=34.93, n=178; men: r=0.20, =0.20, q2=0.04, 

MSE=38.00, n=96; z=1.54, p=0.12). Likewise, models trained only in women predicted 

craving in men (r=0.39, p<0.001, df=176) and vice versa (r=0.43, p<0.001, df=94).  

Virtual lesion analysis 

First, we excluded only individual networks from CPM (e.g. predictions were 

preformed using all networks except the DMN). In all cases, predictions removing any 

single network were still significant (p’s<0.01), suggesting that no single network is 

responsible for prediction. As shown in Table S5, when excluding a single network, 

subcortical, salience, and default mode networks produced the largest reductions in 

prediction performance, suggesting these networks contribute the most towards 

prediction. Next, we ran CPM using edges from only a single network. Using a single 

network for prediction resulted in significant predictions for all networks (p’s<0.01). As 

shown in Table S6, the subcortical, salience, and default mode networks showed the 

best single networks for prediction, in alignment with the findings above. The cerebellum 

network produced the worst prediction performance of all networks, although this might 
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be confounded by the large number of missing nodes in this network (Figure S1). 

Finally, using a linear search, the best combination of networks for prediction was found 

using the subcortical, salience, and default mode networks, which performed 

numerically (but not significantly) better than the next two best performing combinations 

(all networks and subcortical plus salience networks). 

Group differences in connectivity 

Across all conditions, 1547 edges, or about 5% of the total number of possible 

edges, exhibited significant (p<0.05, corrected) group differences in connectivity 

between the substance use-related and control groups (Figure S4). Overall, the nodes 

contributing to prediction and the nodes contributing to group differences were not 

correlated, suggesting that the predictive modeling results are neurobiologically distinct 

from the group differences (all conditions: r=-0.07, p=0.25, df=245; appetitive: r=-0.021, 

p=0.75, df=245; stress: r=0.01, p=0.92, df=245; neutral-relaxing: r=-0.021, p=0.75, 

df=245). The nodes with the largest number of significant edges that differed between 

groups were located in the cerebellum, brainstem, PCC, and frontoparietal association 

cortices (Figure S4). When considering these edges across conditions, stronger 

connectivity during the appetitive condition, and both stronger and weaker connectivity 

during the stress condition (i.e., for different edges), for the substance use-related group 

compared to control group, contributed most of these edges (691, 421, 410, 

respectively). In general, the group differences in cerebellar and brainstem edges were 

observed during the appetitive condition, while the group differences in the PCC and 

association cortices were observed during the stress condition. No significant group 

differences during the neutral-relaxing condition were observed.  
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FIGURE S2. Loadings of the 1st principal component across all craving measures. 
Across 6 self-report craving measures taken before and after each imagery condition, 
each craving measure contributed approximately equally to the 1st principal component 
used in prediction.  

Before 
Appetitive

Before 
Neutral-
relaxing

Before 
Stress

After 
Appetitive

After 
Neutral-
relaxing

After 
Stress
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FIGURE S3. Total network-level contribution to predicted craving. Plotted values were 
calculated by sum over each each row (or column) in Figure 4 to produce a single 
summary number for total network-level contribution. For the appetive condition, the 
DMN and motor-sensory network contributed the most. For the neutral-relaxing 
condition, the visual networks contributed the most. For the stress condition, the 
subcortical and motor-sensory networks contributed the most. Missing nodes were 
primarly in the cerebellar network, which may impact the contribution of this network. 
MF=medial frontal network; FPN=frontal parietal network; MOT=motor-sensory network; 
V1=visual network #1; V2=visual network #2; VA=visual association network; 
SAL=salience network; SC=subcortical network; CBL=cerebellar network.  
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FIGURE S4. Node-level contribution to group differences in connectivity. One-thousand-
five-hundred-and-forty-seven edges, or about 5% of the total number of possible edges, 
exhibited significant (p<0.05, corrected) group differences in connectivity between the 
substance use-related and control groups. The nodes with the largest number of 
significant edges that differed between groups were located in the cerebellum, 
brainstem, PCC, and frontoparietal association cortices. Overall, the nodes contributing 
to prediction and the nodes contributing to the group differences were different and not 
overlapping. Warmer regions (darker red) indicate either regions of largest number of 
significant edges that differed between groups (All conditions) or regions of largest 
number of significant edges that were greater in the substance use-related group 
compared to the control group (Appetite, Neutral-relaxing, Stress). Cooler regions 
(darker blue) indicate regions of largest number of significant edges that were weaker in 
the substance use-related group compared to the control group. 
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FIGURE S5. Scatter plots for the external validation sample. In an independent set of 
individuals collected using a different fMRI task paradigm and measures of self-reported 
craving, the ‘craving network’ successfully predicted self-reported craving of food during 
10 hours of fasting using both the baseline scans (r=0.47, p=0.003, df=30) and after 
fasting scans (r=0.31, p=0.04, df=30). The difference in prediction performance using 
baseline and fasting scans was not significant (z=1.01, p=0.31, Steiger's test). 
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TABLE S1. Self-reported craving. Craving data are presented as means with standard 
deviations in parentheses. 
 
Group Before  

appetite 
condition 

After  
appetite 
condition 

Before 
neutral-
relaxing 
condition 

After 
neutral-
relaxing 
condition 

Before 
stress 
condition 

After  
stress 
condition 

Total Sample 1.44 (2.48) 2.24 (2.92) 1.63 (2.66) 1.53 (2.63) 1.62 (2.65) 1.82 (2.75) 

Controls 0.96 (1.92) 1.68 (2.37) 1.07 (2.02) 0.95 (1.97) 1.04 (1.95) 1.17 (1.99) 

Substance 
use-related 
disorders 

1.88 (2.82) 2.74 (3.27) 2.12 (3.04) 2.04 (3.02) 2.14 (3.05) 2.39 (3.18) 

 

TABLE S2. Prediction performance using mean craving compared to PCA 

Variable r  q2 MSE p-value 

Mean craving 
across all 
conditions 

0.41 0.38 0.14  3.37 p<0.001 

Mean craving 
before all 
conditions 

0.44 0.44 0.16  2.87 p<0.001 

Mean craving 
after all 
conditions 

0.38 0.36 0.13  3.88 p<0.001 

PCA on craving 
before all 
conditions 

0.45     0.45 0.17 16.37 p<0.001 

PCA on craving 
after all 
conditions 

0.37     0.34     0.12 18.65 p<0.001 

Pearson’s correlation (r), Spearman’s rank correlation (), cross-validated coefficient of 
determination (q2), and mean square error (MSE) between observed and predicted values  
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TABLE S3. Prediction performance using a single imagery condition 

Task r  q2 MSE p-value 

Appetitive imagery alone 0.29    0.28     0.06     3.57 p<0.001 

Neutral-relaxing imagery alone 0.36 0.35 0.1 2.78 p<0.001 

Stress imagery alone 0.29 0.34 0.05 3.07 p<0.001 

Pearson’s correlation (r), Spearman’s rank correlation (r), cross-validated coefficient of 
determination (q2), and mean square error (MSE) between observed and predicted values  

 

TABLE S4. Prediction from differences between task connectomes 

Contrast r  q2 MSE p-value 

Appetitive – Neutral-relaxing -0.03    -0.01  0.0    0 1 

Neutral-relaxing – Stress -0.04 0.01 0.0 0 1 

Appetitive – Stress  0.04 0.08 0.07 9.6 .82 

 

TABLE S5. Change in prediction performance after excluding a single network 

Excluded network r P value % change 

Subcortical 0.35 <0.001 -5.79 

Salience 0.35 <0.001 -5.58 

Default Mode 0.36 <0.001 -3.86 

Sensory-Motor 0.36 <0.001 -2.92 

Medial Frontal 0.37 <0.001 -1.29 

Visual Association 0.38 <0.001 1.07 

Visual II 0.38 <0.001 1.42 

Visual I 0.38 <0.001 2.28 

Frontoparietal 0.38 <0.001 2.82 

Cerebellar 0.38 <0.001 2.95 
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TABLE S6. Change in prediction including only a single network 

Included network r P value % change 

Subcortical 0.38 <0.001 1.90 

Salience 0.36 <0.001 -2.15 

Default Mode 0.34 <0.001 -7.99 

Sensory-Motor 0.34 <0.001 -8.93 

Medial Frontal 0.32 <0.001 -15.29 

Visual Association 0.27 <0.001 -28.7 

Visual II 0.26 <0.001 -31.2 

Visual I 0.24 <0.001 -35.19 

Frontoparietal 0.21 <0.001 -43.51 

Cerebellar 0.17 0.01 -54.91 
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