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1. Measurement occasions 

The NLSY-79 introduced a suite of additional measurements to be completed by 

participants at ages 40 and 50, i.e., at the scheduled wave coinciding with the year 

when they reach the relevant age. While the CES-D-SF was initially tied to year-

based measurement i.e., the 1992 and 1994 surveys, it was then moved to the suite 

of health measurements at ages 40 (conducted between 1998 and 2006) and 50 

(conducted between 2008 and 2016). Because CES-D-SF score is one of the time-

varying covariates in our model, we decided to change all time-varying covariates 

after 1994 to be those measured at waves coinciding with age 40 measurement (as 

opposed to a particular calendar year). To mitigate the impacts of this change, age 

was included as a covariate in the IPTW models for 1994 and 2002 alcohol 

consumption, and participants were considered censored if their designated ‘age 40’ 

or ‘age 50’ questionnaire occurred when their actual age at measurement deviated 

from the target by more than one year (i.e., only those aged 39-41, and 49-51 

respectively were eligible). 

 

2. Variable derivation: baseline time-fixed variables 

Time-fixed historical alcohol consumption was based on pre-baseline measurement 

occasions at 1983, 1984, 1985, 1988, 1989 and 1992, and condensed into a single 

four-category variable consisting: some past occasional drinking, some past 

moderate drinking, some past above-guidelines drinking, or lifetime abstention 

(abstinent at all waves and reported no past lifetime consumption). Individuals 

missing more than one wave of pre-1994 data, and with no confirmed above-

guidelines drinking, were excluded. No information on heavy episodic drinking was 

available at the 1992 wave.  
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Sex was answered at the 1979 initial interview, with male and female the only 

options. The binary ever-smoked variable was based on 1992 measurement, as was 

the ever-use of illicit drugs variable (derived from answers to separate questions 

about cocaine, cannabis, and crack cocaine. Frequent previous religious service 

attendance was also a binary variable, coded as yes if the individual attended 

services at least monthly in either 1979 or 1982. Race, as assessed in 1979, was a 

categorical variable with three options: Hispanic, Black, or Non-Black and Non-

Hispanic. Educational attainment was a continuous variable based on response in 

1992, and average parental educational attainment was a continuous variable 

averaging mother and father’s years of education based on response in 1992. 

 

3. Distribution of CES-D-SF scores at age 50 

Given a large number of 0 values on the CES-D-SF (i.e., complete absence of 

depressive symptoms), a Shapiro-Wilk test of normality in the baseline sample was 

performed. This revealed a non-normal distribution (W=0.81, p<0.001), but this skew 

value is not considered large enough to warrant transformation or a non-parametric 

statistical test (1). 

 

4. Covariate selection process 

A 2020 meta-analysis of studies evaluating the relationship between alcohol 

consumption and depressive symptoms was used to guide covariate selection for the 

current study (2). Covariates controlled for in the meta-analysis’ included papers 

were extracted and tallied (see Web Figure 2). Of the 16 variables most frequently 

controlled for (controlled for in at least four of the meta-analysis’ included studies), 

the only ones we were unable to derive adequate variables for from our own dataset 
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were those related to physical activity, diet, childhood adversities, and familial history 

of alcohol or mental health problems. Given other variables may help in predicting 

exposure group membership, in addition to variables corresponding to the 12 

remaining from the above process, we also included illicit drug use (given known 

comorbidities with alcohol use), household size, health insurance status, urban/rural-

dwelling, receipt of welfare, prior religious attendance, and parental education.  

 

5. Variable derivation: time-varying variables 

The age variables at each wave were calculated based on age given in 1981, as 

recommended by the NLSY79 itself. Self-reported health limitation was a binary 

variable reflecting subjective assessment of whether a health limitation impacted the 

individual’s working ability (excluding cases for whom this limitation is pregnancy 

only). The marital status variables had three categories: never married, married (both 

of these options were present in the original question), and then a condensed 

category of separated/divorced/widowed. Smoking status (N/A at age 40) was a 

binary current smoking or not variable, as was illicit drug use (derived from answers 

to separate questions about cocaine, cannabis, and crack cocaine). BMI was a 

continuous variable and was winsorized at the 95th percentile. Employment status 

was a binary variable (currently employed or unemployed), as was health insurance 

status (currently possess or not), urban/rural-dwelling, and current receipt of any 

form of welfare. Household size was a continuous variable indicating number of 

individuals in the household (including the participant). Income was a continuous 

variable representing the individual’s income, or if they had a spouse, an average of 

combined income, and was winsorized at the 95th percentile. 
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6. Assumptions for valid causal inference in marginal structural models  

Drawing valid causal inference from marginal structural models rests on four 

assumptions: exchangeability, positivity, consistency, and correct specification of 

propensity score models used in weight generation (3).  Exchangeability requires 

that the risk of an outcome in a particular alcohol consumption group X would have 

been the same for another consumption group Z, had those in X in fact consumed 

the same amount as those in Z (4). This means there must be no unmeasured 

confounders and no residual confounding remaining after weighting. Whether 

exchangeability is met is not strictly testable (3). Positivity requires that for any 

given combination of covariate values, there must be a positive probability of 

belonging to any of the alcohol consumption categories (as is the case in RCTs, 

where it is possible for any individual to be assigned to any condition) (4). This can 

be checked by inspecting descriptive cross-tabulations of exposure groups and 

categorical/categorized versions of continuous covariates (5). Consistency requires 

that the observed outcome under a given exposure is equal to the potential outcome 

under that same observed exposure (4). To satisfy the consistency assumption, 

there must not be multiple versions of a given exposure group (which may 

reasonably be questioned in the case of alcohol regarding, e.g., different drinking 

patterns or different beverages consumed). Finally, correct model specification of 

both the exposure model (for IPTWs) and the censoring model (for IPCWs) is 

assumed, which can be assessed by inspecting the distribution of stabilized weights 

(3). 
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7. Weight derivation 

Survey weights for all individuals were obtained from the NLSY79 website 

(https://www.nlsinfo.org/weights/nlsy79), and were then normalized. Inverse 

probability of treatment weights (IPTWs) were created for alcohol consumption 

category at 1994, 2002, and 2006. The purpose of the IPTWs was to reweight the 

sample at each timepoint such that covariates were no longer associated with 

exposure category. Residuals from generalized linear models regressing alcohol 

consumption on covariates indicated evidence of statistically significant non-linearity 

between household size and alcohol category, and also depressive symptoms and 

alcohol category (not at all waves for either), so quadratic terms were added in the 

IPTW models for these variables. Individuals’ normalized survey weights were 

incorporated in the PS model (6,7). IPTWs were stabilized by incorporating prior 

time-varying alcohol exposure values in the numerator, for each person not yet 

censored.  

 

The below gives the formula for the product of all IPTWs for an individual, where R is 

exposure category, C is attrition/censoring, R̅ is exposure history, L is time-varying 

covariates, and X is baseline covariates: 

 

Wi
r̅=∏{

P(Ri,t|𝐶̅t=0, R̅t-1=R̅i,t-1,)

P(Ri,t|𝐶̅t=0, R̅t-1=R̅i,t-1, L̅t-1=L̅i,t-1, X=xi )
}

𝑡=3

t=1

 

Stabilized inverse probability of censoring weights (IPCWs) were also created for 

each of these waves, in order to reweight the sample at each timepoint so that 

covariates were no longer related to attrition status at the following wave (i.e., 2002, 

2006, age 50).  

 

https://www.nlsinfo.org/weights/nlsy79
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The below gives the formula for the product of all IPCWs for an individual (same 

notation as above, and where 𝐶̅ is attrition/censoring history): 

Wi
𝑐=∏{

P(𝐶̅t+1=0|𝐶̅t=0,R̅t=R̅i,t,)

P(𝐶̅t+1=0|𝐶̅t=0, R̅t=R̅i,t, L̅t=L̅i,t, X=xi )
}

𝑡=3

t=1

 

The final weight for each individual was the product of their three IPTWs, three 

IPCWs, and survey weight. These final weights were trimmed at the 98th percentile 

to mitigate the impact of large weights, resulting in a set of weights in the final 

analyzed sample ranging from 0.07 to 6.19, with a mean of 1.16 and standard 

deviation of 1.27. As illustrated in Web Figure 3, the final weight greatly improved 

covariate balance between alcohol consumption groups at each timepoint, with 

mean differences between groups for most covariates falling within the conservative 

.1 rule-of-thumb after weighting.  

 

 

8. R packages and scripts 

The key R packages used for these analyses were WeightIt (for generating weights) 

(3,8,9), cobalt (for generating plots of covariate balance before and after weighting) 

(10), multcomp (for running contrast analyses) (11), boot (for bootstrapping results) 

(12,13), and EValue (for generating E-values) (14–16). An example script for 

generating IPTWs is provided below. Code for any other steps discussed in this 

paper is available from the authors on request.  

```{r} 

#Making propensity score formulae for use in weight generation 

fixedVars<- c ("Historical_alcoholCategory", "Sex", "EverSmoked", " Everused_illicit", " Self_esteem_historical", " 

Relgious_attendance_historical", "RACE"," Education_years", "Parental_education_years") 

 

Vars92<- c ("CESD_92", "Age92", "HealthLimit92", "Marital92", "SMOKE92", "Illicit92", "BMI92", "Labour92", "Insurance92", 

"Household_size92", "Urban92", "Welfare92", "Income92", "I(CESD_92^2)","I(Household_size92^2)") 
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Vars94<- c ("alcoholCategory_94","CESD_94","Age94", "HealthLimit94","Marital94","SMOKE94", 

"Illicit94","BMI94","Labour94","Insurance94","Household_size94","Welfare94","Urban94", "Income94", 

"I(CESD_94^2)","I(Household_size94^2)") 

 

Vars40<- c ("alcoholCategory_02", "CESD_Age40", 

"HealthLimit40","Marital40","BMI40","Labour40","Insurance40","Household_size40", "Welfare40", "Urban40","Income40", 

"I(CESD_Age40^2)","I(Household_size40^2)") 

 

fixedVars <- paste(fixedVars, collapse ="+")  

Vars92 <- paste(Vars92, collapse ="+") 

Vars94 <- paste(Vars94, collapse ="+") 

Vars40 <- paste(Vars40, collapse ="+") 

 

full94_IPTW<-paste("alcoholCategory_94 ~ ",paste(fixedVars,Vars92,sep="+"), collapse="")  

full02_IPTW<-paste("alcoholCategory_02 ~ ",paste(fixedVars,Vars92,Vars94,sep="+"), collapse="") 

full06_IPTW<-paste("alcoholCategory_06 ~ ",paste(fixedVars,Vars92,Vars94,Vars40,sep="+"), collapse="") 

 

#Generating exposure weights for first wave 

Tweights94_surv <- weightit(as.formula(full94_IPTW),  

                      data=IPTW_df, 

                      method="cbps",  

                      over=FALSE, 

                      stabilize=TRUE, 

                      s.weights=IPTW_df$NORMSurvWeight) 

 

#Joining these weights back to the data frame 

IPTW_df<-bind_cols(IPTW_df, Tweights94_surv[["weights"]]) 

 

#Generating exposure weights for second wave 

IPTW_df_uncensored1<-IPTW_df %>% filter(CENSOR1==0) 

IPTW_df_censored1<-IPTW_df %>% filter(CENSOR1==1) 

 

full02_IPTW_list<-list(as.formula(full02_IPTW)) 

Tweights02_surv <- weightitMSM((full02_IPTW_list),  

                      data=IPTW_df_uncensored1, 

                      method="cbps",  

                      over=FALSE, 
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                      stabilize=TRUE, 

                      num.formula=~alcoholCategory_94, 

                      s.weights=IPTW_df_uncensored1$NORMSurvWeight) 

 

#Joining these weights back to the data frame 

IPTW_df_censored1<-IPTW_df_censored1 %>% mutate(Tweights02_surv=0) 

IPTW_df_uncensored1<-bind_cols(IPTW_df_uncensored1, Tweights02_surv[["weights"]]) 

IPTW_df<-bind_rows(IPTW_df_censored1, IPTW_df_uncensored1) 

 

#Generating exposure weights for third wave 

IPTW_df_uncensored2<-IPTW_df %>% filter(CENSOR2==0) 

IPTW_df_censored2<-IPTW_df %>% filter(CENSOR2==1) 

 

full06_IPTW_list<-list(as.formula(full06_IPTW)) 

Tweights06_surv <- weightitMSM((full06_IPTW_list),  

                      data=IPTW_df_uncensored2, 

                      method="cbps",  

                      over=FALSE, 

                      stabilize=TRUE, 

                      num.formula=~alcoholCategory_94+alcoholCategory_02, 

                      s.weights=IPTW_df_uncensored2$NORMSurvWeight) 

 

#Joining these weights back to the data frame 

IPTW_df_censored2<-IPTW_df_censored2 %>% mutate(Tweights06_surv=0) 

#now bind weights from above to IPTW_df_censored using col bing 

IPTW_df_uncensored2<-bind_cols(IPTW_df_uncensored2, Tweights06_surv[["weights"]]) 

#Then bind the 2 dfs together so you have both censored and uncensored together again 

IPTW_df<-bind_rows(IPTW_df_censored2, IPTW_df_uncensored2) 

``` 
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9. Sensitivity analyses: Stratification by sex  

Analyses (as described in the Methods section of the main article and Web Methods 

in the supplement) were re-performed separately for the female and male sub-

samples, beginning with separate weight generation in each sub-sample. Unlike for 

the main analysis, sex was not included as a covariate in IPTW/IPCW models, and 

survey weights not incorporated, as subsamples are not intended to be 

representative of the general population. For females, weights for the final analyzed 

sample ranged from 0.11 to 10.92, with a mean of 1.55 and standard deviation of 

2.00. For males, weights in the final analyzed sample ranged from 0.13 to 7.69, with 

a mean of 1.34 and standard deviation of 1.51.  
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Figure S1. Directed acyclic graph (DAG) of assumed longitudinal relationships between variables over time   

 

 

 

DAG made with the DAGitty web application (17). Pink bubbles indicate ancestors of exposure and outcome, green bubbles indicate 
exposures, and the blue bubble indicates outcome. Pink lines indicate biasing pathways while green lines indicate causal pathways.    
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Figure S2. Covariates controlled for in studies included in the Li et al. meta-analysis 
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Figure S3. Covariate balance between exposure groups at 1994, 2002, and 2006 
before and after weighting by the final weighta 

A) 1994 

 

 

B) 2002
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C) 2006 

 

aFigures display differences in means for the two exposure groups for which these 
differences are largest. Variables followed by an asterisk are unstandardized categorical 
variables. Covariate names (and their categories) are abbreviated for brevity: ‘illicit’ stands 
for illicit drugs; ‘HealthLimit’ stands for self-reported health limitations; ‘Historical_alcohol_LA’ 
stands for lifetime abstainer at baseline. 
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Figure S4. Predicted mean CES-D-SF scores at age 50 for those consistently 
abstaining, drinking occasionally, moderately or above guidelines over the 1994, 
2002 and 2006 measurement occasions, stratified by sexa 

 

 

aWhiskers indicate bootstrapped 95% CIs. Groups do not possess a specific number of 
subjects as they represent hypothetical trajectories. 
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Figure S5. Predicted probability of probable depression at age 50 for those 
consistently abstaining, drinking occasionally, moderately or above guidelines over 
the 1994, 2002 and 2006 measurement occasions, stratified by sexa 
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Table S1. Ways in which MSMs can improve causal inference 

Common limitations of past research MSMs:  

Traditional confounder adjustment relies on making 

accurate modelling assumptions about confounder-

outcome relationships(18–20) 
 

Instead require modelling confounder-treatment 

relationships, with the ability to include multiple 

functional forms 

Adjusting only for baseline covariates ignores time-

varying confounders, while standard control for time-

varying covariates will block mediated effects and/or 

induce collider bias(21,22) 
 

Can incorporate time-varying covariates that act as 

both mediators and confounders 

Difficulty in isolating effects in the direction of interest 

(i.e., alcohol’s effect on depression isolated from 

depression’s effect on alcohol consumption)  
 

Can incorporate multiple measurements of both the 

exposure and outcome over time, accounting for 

time-varying exposures being affected by past 

outcome levels  

Including only baseline alcohol consumption induces 

exposure misclassification, ignoring variability in 

consumption over follow-up(23) 
 

Can incorporate multiple measurements of exposure 

over time  

Selection biases are common,(24) including over-

representation of healthy drinkers and differential 

attrition 

Can incorporate both survey weights (making the 

baseline sample representative of the population) and 

censoring weights (making the final sample 

representative of baseline) 

 

 

Table S2. Output from contrasts for analyses using continuous CES-D-SF scores as 
outcome 
 

Contrasts Estimates (b) Std. Error P Bootstrapped CI 

Consistent occasional vs 

Consistent abstinence 

-0.84 0.26 0.001 -1.63, -0.11  

Consistent moderate vs 

Consistent abstinence 

-1.08 0.30 <0.001 -1.88, -0.20 

Consistent above-guidelines 

vs Consistent abstinence 

0.34 0.25 0.162 -0.62, 1.25 
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Table S3. Output from contrasts for analyses using binary probable depression as 
outcome 
Contrasts Estimates (OR) P Bootstrapped CI 

Consistent occasional vs 

Consistent abstinence 

0.58 <0.001 0.36, 0.88 

Consistent moderate vs 

Consistent abstinence 

0.59 0.005 0.26, 1.13 

Consistent above-guidelines 

vs Consistent abstinence 

1.06 0.683 0.66, 1.72 
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