SUPPLEMENTARY METHODS

Efficiency

Given a network composed of a set of nodes and edges, shortest path length, d_{ij} , is the minimum number of edges between two nodes *i* and *j*, and the efficiency, e_{ij} , between them is defined as the inverse of shortest path length: $e_{ij} = 1/d_{ij}$ {1}, such that $0 \le e_{ij} \le 1$.

Average efficiency for a network component

Network components were defined at different spatial levels from the whole brain level via the hemispheric level to the regional level (Supplementary Figure S1 and Supplementary Table S2): at the whole brain level, there was only one network component; at the hemispheric level, three network components, including within affected hemisphere, within unaffected hemisphere, and between hemispheres, were determined by dividing the whole brain into two hemispheres; and at the regional level, 296 network components were specified by dividing the whole brain into 12 regions in each hemisphere. The aim of considering the different spatial levels was to examine the hierarchical relationship of functional integration changes. We expected that contributions of each network component at the regional level to the whole brain changes would reveal the pattern of abnormalities.

For any network component composed of nodes, average efficiency is calculated as the avarage of efficiency for every pair of nodes in the network component. For instance, for the network component at the whole brain level, average efficiency can be calculated as the avarage of efficiency for every pair of 90 nodes in the network component.

Cost-integrated measure of average efficiency

Since connection topology is inherently dependent on the sparsity or cost of a network which is defined as a proportion of the number of edges in a network {2}, a cost-integrated measure

of a network *N* may be computed by integrating cost-wise values over a cost domain {3}. A cost-integrated measure of average efficiency, E(N), was acquired by integrating cost-wise average efficiency, E(N, k) at cost *k*, according to a probability mass function of cost, p(k), over a cost domain Ω : $E(N) = \sum_{k \in \Omega} E(N, k) p(k)$. For p(k), we chose a uniform distribution over a favoured cost domain, so-called a small-world regime, across which brain networks satisfy the properties of small-world networks {4}.

SUPPLEMENTARY FIUGRE S1. Calculation of the average efficiency for each subnetwork at three spatial levels. The efficiency calculated for each pair of nodes in a functional brain network yields a 90×90 efficiency matrix, and for any subnetwork composed of nodes, the average efficiency is calculated as the avarage of the efficiency for every pair of nodes in the subnetwork. Edges, and thus the efficiency, are not determined for diagonal elements (indicated in grey) as self-connections are not considered. The region labels are as given in Supplementary Table S1.

SUPPLEMENTARY FIGURE S2. Comparisons of the average efficiency between healthy controls and patients with left/right temporal lobe epilepsy (LTLE/RTLE) at the whole brain level. Error bars represent standard deviations.

SUPPLEMENTARY TABLE S1. Forty-five brain parcellations for each hemisphere corresponding to the nodes of functional brain networks. Each brain parcellation was assigned to one of 12 brain regions: central (Cnt), lateral frontal (FrnL), medial frontal (FrnM), orbital frontal (FrnO), temporal (Tmp), lateral parietal (PrtL), medial parietal (PrtM), lateral occipital (OccL), medial occipital (OccM), limbic (Lmb), insular (Ins), and subcortical (Sbc) regions.

Parcellation	Region label
Precental gyrus	
Rolandic operculum	Cnt
Postcentral gyrus	
Superior frontal gyrus, dorsolateral	
Middle frontal gyrus	Engl
Inferior frontal gyrus, opercular part	FIL
Inferior frontal gyrus, triangular part	
Superior frontal gyrus, medial	
Supplementary motor area	FrnM
Paracentral lobule	
Superior frontal gyrus, orbital part	
Superior frontal gyrus, medial orbital	
Middle frontal gyrus, orbital part	Emp
Inferior frontal gyrus, orbital part	FIIO
Gyrus rectus	
Olfactory cortex	
Superior temporal gyrus	Tmp

PrtL
PrtM
OccL
OccM
OCCIVI
Lmb
Ins

Amygdala Caudate nucleus Lenticular nucleus, putamen Sbc Lenticular nucleus, pallidum Thalamus **SUPPLEMENTARY TABLE S2.** Hierarchical spatial levels of functional brain networks. The number of subnetworks at each spatial level was counted for every possible subnetwork specified within and between whole brain divisions.

Spatial level	Whole brain division	No. of subnetworks
Whole brain level	1 whole brain	1
Hemispheric level	2 hemispheres	3
Regional level	24 regions	296

	A ma		Orenet	D	Seizure			CVLT			ROCFT	
Age No (year	Age (year)	Sex	Onset Sex (year)	Onset Duration (year) (year)	control level	Laterality	IR (%)	DR (%)	R (%)	IR (%)	DR (%)	R (%)
1	67	М	57	10	GSC	RTLE	50.00	16.00	50.00	49.17	56.87	66.54
2	51	М	21	30	GSC	RTLE	86.00	86.00	86.00	60.12	54.91	18.63
3	54	F	35	19	GSC	RTLE	50.00	16.00	50.00	76.85	83.39	80.96
4	45	М	19	26	GSC	LTLE	16.00	50.00	86.00	8.53	7.93	13.70
5	57	М	46	11	GSC	RTLE	50.00	50.00	86.00	52.06	52.68	11.43
6	40	М	20	20	GSC	RTLE	16.00	16.00	50.00	0.50	5.00	14.00
7	63	F	14	49	GSC	LTLE	50.00	50.00	50.00	29.38	0.54	28.39
8	42	М	35	7	PSC	RTLE	50.00	50.00	16.00	0.50	0.50	50.00
9	44	F	42	2	PSC	LTLE	86.00	86.00	50.00	7.00	5.00	73.00
10	22	М	17	5	GSC	RTLE	50.00	16.00	16.00	0.50	0.50	0.50
11	44	F	15	30	PSC	RTLE	2.00	2.00	50.00	54.00	46.00	5.00
12	43	М	17	26	GSC	RTLE	50.00	16.00	50.00	8.00	12.00	50.00

SUPPLEMENTARY TABLE S3. Demographic characteristics of temporal lobe epilepsy (TLE) patients.

13	63	F	24	39	GSC	RTLE	16.00	16.00	16.00	1.70	2.00	0.01
14	24	F	22	2	GSC	LTLE	50.00	86.00	86.00	42.00	42.00	34.00
15	46	F	45	1	GSC	RTLE	50.00	16.00	16.00	65.45	60.87	36.62
16	37	F	34	3	GSC	LTLE	50.00	50.00	16.00	42.00	34.00	1.00
17	24	F	12	12	PSC	RTLE	50.00	50.00	86.00	62.00	58.00	4.00
18	43	Μ	29	14	PSC	LTLE	50.00	86.00	50.00	69.00	34.00	73.00
19	45	F	12	33	GSC	LTLE	50.00	86.00	50.00	34.00	69.00	1.00
20	21	F	17	4	GSC	LTLE	2.00	16.00	50.00	88.00	81.00	0.50
21	22	М	17	5	GSC	LTLE	50.00	86.00	50.00	76.00	76.00	96.00
22	52	F	35	17	GSC	RTLE	86.00	86.00	50.00	25.02	51.90	34.11
23	39	F	23	16	PSC	RTLE	50.00	16.00	16.00	3.00	2.00	1.00
24	68	F	52	16	GSC	LTLE	0.50	2.00	0.50	6.49	7.68	65.46
25	27	F	25	1	PSC	RTLE	50.00	50.00	86.00	50.00	16.00	62.00
26	45	F	17	29	GSC	RTLE	16.00	50.00	50.00	29.20	23.05	36.62
27	54	М	11	43	GSC	LTLE	0.50	0.50	50.00	6.44	4.22	1.55
28	38	Μ	37	1	GSC	LTLE	16.00	16.00	50.00	95.00	82.00	27.00

29	54	F	28	26	PSC	LTLE	2.00	0.50	2.00	2.43	2.82	0.50
30	26	F	12	24	GSC	LTLE	86.00	50.00	50.00	97.00	96.00	62.00
31	39	F	13	26	PSC	RTLE	16.00	50.00	50.00	10.00	27.00	12.00
32	26	F	4	22	GSC	RTLE	50.00	50.00	16.00	99.50	66.00	1.00
33	51	F	1	50	PSC	LTLE	16.00	16.00	16.00	2.04	2.07	9.62
34	44	F	28	16	PSC	LTLE	16.00	16.00	50.00	0.50	0.50	4.00
35	32	Μ	16	16	GSC	RTLE	16.00	16.00	50.00	27.00	50.00	42.00
36	30	F	22	8	GSC	LTLE	50.00	50.00	86.00	92.00	79.00	66.00
37	46	F	34	12	GSC	RTLE	16.00	16.00	16.00	1.13	2.74	17.02
38	43	М	24	19	GSC	RTLE	16.00	16.00	50.00	84.00	88.00	73.00
39	50	М	25	25	GSC	RTLE	50.00	50.00	86.00	2.04	1.10	15.11
40	33	М	20	13	PSC	LTLE	2.00	2.00	0.50	0.50	0.50	0.50
41	54	F	53	1	GSC	RTLE	98.00	86.00	86.00	9.09	26.52	8.33
42	44	F	12	32	PSC	LTLE	2.00	16.00	50.00	0.50	0.50	1.00
43	34	F	22	12	GSC	LTLE	0.50	16.00	86.00	0.50	0.50	0.50
44	36	F	26	8	GSC	RTLE	50.00	50.00	50.00	62.00	69.00	12.00

45	49	F	46	3	GSC	LTLE	50.00	50.00	50.00	37.09	44.86	57.82
46	28	F	20	8	PSC	LTLE	16.00	2.00	86.00	76.00	76.00	4.00
47	24	М	10	14	PSC	LTLE	86.00	50.00	50.00	0.50	0.50	0.50
48	23	F	13	10	GSC	LTLE	50.00	50.00	50.00	69.00	54.00	14.00

M, male; F, female; GSC, good seizure control; PSC, poor seizure control; LTLE, left TLE; RTLE, right TLE; CVLT, California Verbal Learning Test; ROCFT, Rey-Osterrieth Complex Figure Test; IR, immediate recall; DR, delayed recall; R, recognition.

SUPPLEMENTARY TABLE S4. Subnetworks showing alterations in the average efficiency at the regional level in (A) temporal lobe epilepsy patients with good seizure control (TLE_{GSC}) and (B) temporal lobe epilepsy patients with poor seizure control (TLE_{PSC}) relative to healthy controls. Positive and negative *t* values represent increases and decreases, respectively, in the average efficiency in the patient subgroups.

Subnetwork	<i>t</i> value	<i>p</i> value
(A) TLE _{GSC} patients		
Between Sbc A and PrtM U	2.7334	0.0078
Between Sbc A and Lmb U	2.6437	0.0100
Within Sbc A	2.5900	0.0115
Between Sbc A and PrtM A	2.5062	0.0143
(B) TLE _{PSC} patients		
Within Sbc A	3.8244	0.0003
Between Sbc A and Lmb U	3.6943	0.0005
Between Sbc A and FrnO U	3.1422	0.0026
Between Sbc A and PrtM A	3.1234	0.0028
Between Sbc U and Lmb U	3.0143	0.0038
Between Sbc A and FrnO A	2.9288	0.0049
Between Sbc A and Lmb A	2.9133	0.0051
Between Sbc A and OccM A	2.8308	0.0064
Between Sbc A and Sbc U	2.8111	0.0067
Within PrtL A	-2.7841	0.0072
Between Sbc U and FrnO U	2.6683	0.0099
Between FrnL U and Cnt U	-2.6588	0.0101

Between Sbc U and FrnO A	2.6369	0.0107
Between Sbc A and Tmp U	2.6218	0.0112
Between Sbc A and OccM U	2.5978	0.0119
Between Sbc A and PrtM U	2.5623	0.0130
Between Lmb A and FrnO U	2.5281	0.0142
Between Sbc A and FrnM U	2.5263	0.0143
Between Sbc U and Lmb A	2.4965	0.0154
Between Sbc U and PrtM A	2.4715	0.0164
Between FrnO A and OccM A	2.4041	0.0194
Between Sbc A and OccL A	2.3611	0.0216
Between Sbc A and Tmp A	2.3450	0.0225
Between Lmb A and FrnO A	2.3295	0.0233
Between FrnO A and OccL A	2.3117	0.0244
Between Lmb U and Ins A	2.3099	0.0245

The region labels are given in Supplementary Table S1. A, affected hemisphere; U, unaffected hemisphere.

SUPPLEMENTARY TABLE S5. Subnetworks showing correlations between the average efficiency and (A) immediate recall (IR), (B) delayed recall (DR), and (C) recognition (R) scores of the Rey-Osterrieth Complex Figure Test (ROCFT) at the regional level in temporal lobe epilepsy patients with poor seizure control (TLE_{PSC}). Positive ρ values represent positive relationships between the average efficiency and memory performance.

Network component	ρ value	<i>p</i> value
(A) ROCFT-IR		
Within Sbc A	0.6692	0.0064
Between Sbc A and FrnO U	0.6656	0.0068
Between Sbc A and Sbc U	0.6510	0.0086
Between Sbc A and Lmb A	0.6183	0.0140
Between Sbc U and Lmb A	0.6183	0.0140
Between Sbc U and FrnO U	0.6146	0.0148
Between Sbc A and Lmb U	0.5965	0.0189
Between Sbc U and FrnO A	0.5746	0.0250
(B) ROCFT-DR		
Between Sbc A and FrnO U	0.7165	0.0027
Within Sbc A	0.6510	0.0086
Between Sbc U and FrnO U	0.6474	0.0091
Between Sbc A and Lmb A	0.6365	0.0107
Between Sbc A and Lmb U	0.6219	0.0133
Between Sbc A and FrnO A	0.5892	0.0208
Between Sbc A and Sbc U	0.5892	0.0208
Between Sbc U and Lim A	0.5856	0.0218

Between Sbc A and Tmp A	0.5783	0.0239
Between Sbc A and OccM A	0.5746	0.0250
(C) ROCFT-R		
Between Lmb A and FrnO U	0.6018	0.0176

The region labels are as given in Supplementary Table S1. A, affected hemisphere; U, unaffected hemisphere.

REFERENCES

- Latora V, Marchiori M: Efficient behavior of small-world networks. Phys Rev Lett 2001; 87:198701
- Latora V, Marchiori M: Economic small-world behavior in weighted networks. Eur Phys J B 2003; 32:249-263
- 3. Ginestet CE, Nichols TE, Bullmore ET, et al: Brain network analysis: separating cost from topology using cost-integration. PLoS One 2011; 6:e21570
- 4. Bassett DS, Bullmore E: Small-world brain networks. Neuroscientist 2006; 12:512-523