Skip to main content

Abstract

Objective:

To identify geographic variation in mental health service use in the Department of Veterans Affairs (VA), the authors constructed utilization-based VA mental health service areas (MHSAs) for outpatient treatment and mental health referral regions (MHRRs) for residential and acute inpatient treatment.

Methods:

MHSAs are empirically derived geographic groupings of one or more counties containing one or more VA outpatient mental health clinics. For each county within an MHSA, patients received most of their VA-provided outpatient mental health care within that MHSA. MHSAs were aggregated into MHRRs according to where VA users in each MHSA received most of their residential and acute inpatient mental health care. Attribution loyalty was evaluated with the localization index—the fraction of VA users living in each geographic area who used their designated MHSA and MHRR facility. Variation in outpatient mental health visits and in acute inpatient and residential mental health stays was determined for the 2008–2018 period.

Results:

A total of 441 MHSAs were aggregated to 115 MHRRs (representing 3,909,080 patients with 52,372,303 outpatient mental health visits). The mean±SD localization index was 59.3%±16.4% for MHSAs and 67.8%±12.7% for MHRRs. Adjusted outpatient mental health visits varied from a mean of 0.88 per year in the lowest quintile of MHSAs to 3.14 in the highest. Combined residential and acute inpatient days varied from 0.29 to 1.79 between the lowest and highest quintiles.

Conclusions:

MHSAs and MHRRs validly represented mental health utilization patterns in the VA and displayed considerable variation in mental health service provision across different locations.

HIGHLIGHTS

A tool is offered to better understand national mental health utilization and referral patterns within the VA and includes outpatient mental health service areas aggregated into residential and inpatient mental health referral regions.
Receipt of VA mental health services substantially varied across geographic areas.
The tool is available for other researchers with access to VA data to use to identify the drivers and consequences of geographic variation in mental health services delivery.
Small area analysis is a technique that facilitates comparison of health services utilization and quality across various geographic areas (1). Using this technique, researchers have consistently documented that the practice of medicine varies across geographic settings. For example, rates of procedures—such as tonsillectomy, prostatectomy, and hysterectomy (2)—and inpatient hospitalization rates for general medical illnesses—such as back problems, gastroenteritis, and heart failure (3)—have varied beyond what would be expected because of patient factors, such as illness severity or treatment preference (46). Furthermore, areas that on average provide substantially more care for identical conditions may not produce better outcomes (7, 8), and such care could represent waste and inefficient resource allocation. Treatment patterns for common life-threatening conditions, such as acute myocardial infarction, vary widely, and patients in areas that have greater surgical capacity are much more likely to undergo surgery, rather than medical interventions (9). It has been suggested that this “unwarranted variation” may be related to the supply of services available across geographic areas and to local medical culture (10).
The development of the Dartmouth Atlas of Healthcare in the 1990s facilitated the application of small area analysis to health care nationally, enabling the systematic identification of unwarranted variation on a local level (11). Recent literature has been more critical of the concept of unwarranted variation in medicine (12, 13). However, there is little debate that variation exists (14) and that developing better tools to measure and better understand the drivers of variation could be a foundational step in improving health care systems (15, 16).
Although small area analysis has been extensively applied to hospital-based medical and surgical services, it has been rarely applied to mental health services (17). A 1995 analysis of psychiatric inpatient admission patterns in Iowa found higher rates of inpatient stays in areas with more primary care physicians, psychiatrists, and inpatient psychiatric units (18). However, the authors used standard hospital service areas (HSAs) created for the Dartmouth Atlas, which are based on where most Medicare recipients living in contiguous zip codes obtain general inpatient hospital services. Because there are many more general hospitals than specialized facilities providing inpatient psychiatric care, most of the HSAs created for the Dartmouth Atlas did not contain a psychiatric unit. The importance of specifically considering psychiatric units is underscored by work in New England indicating that the localization index (LI), that is, the percentage of patients residing in a given HSA who obtain care in that HSA, for psychiatric hospitalizations increased from 23% to 69% when the analysis used mental health–specific HSAs rather than Dartmouth Atlas HSAs (19). Another analysis of the Iowa data grouped counties into politically defined community mental health center (CMHC) catchment areas and found that access to CMHC resources was associated with higher demand for inpatient psychiatric admissions (20). The CMHC catchment areas were not necessarily the same or even intended to be the same as catchment areas for inpatient psychiatric units.
Perhaps the most comprehensive study of geographic variation in inpatient mental health care examined county variation in New York (21). This study found that population variables, such as poverty and population density, were highly correlated with mental health service utilization; however, even when the analysis controlled for these factors, proximity to inpatient facilities was associated with increased utilization. Finally, a less comprehensive but more granular study examined geographic variation in inpatient psychiatric admissions in New York City (22). These authors used zip codes as their unit of analysis and did not construct HSAs. They found that patients residing in a zip code where an inpatient psychiatric unit was located were more likely to be admitted. Similar to previous studies, this analysis was subject to the erroneous assumption that patients obtain their mental health care at local inpatient units: many zip codes did not have an inpatient psychiatric unit, and patients did not necessarily obtain their mental health care within their zip code, county, or state. Although the assumption that patients obtain care locally may be valid for countries with geographic assignments within national health care systems (15, 23, 24), patients in the United States generally have flexibility about where to receive care.
Inpatient treatment dominated U.S. mental health care spending in the 1990s, when the Dartmouth Atlas was created (25, 26). More recently, most mental health care spending is in the ambulatory setting (27). Thus, it may be more reasonable to build the basic geographic unit of analysis of mental health care use around outpatient services. We propose that the most granular level should be called “mental health service area” (MHSA). The Dartmouth Atlas aggregates the 3,436 HSAs into 306 larger hospital referral regions (HRRs) according to where most Medicare recipients living in HSAs obtain heart surgery and neurosurgery (11). Although useful for understanding geographic health service use patterns for expensive, highly technical procedures, HRRs may not be as useful for understanding mental health service utilization. However, in an analogous manner, MHSAs could be aggregated into mental health referral regions (MHRRs) on the basis of where mental health patients living in contiguous MHSAs obtain more intensive and specialized types of mental health treatment, including residential and inpatient care. These utilization-based small areas could be used to conduct analyses of geographic variation in the quality, quantity, and outcomes of mental health care.
This strategy could be used as an organic approach to understanding mental health services use across the U.S. health care system, and we used the Department of Veterans Affairs (VA) as an initial case example. The VA has integrated inpatient and outpatient data for all patients who access VA health care (i.e., VA users). It aims to provide a consistent level of high-quality mental health care nationally and allows users to receive care at their choice of VA facilities. Thus, our objectives were to construct MHSAs and MHRRs for the VA and to use these utilization-based areas to initially evaluate the variation of provision of key mental health services in the VA: outpatient mental health visits and residential and acute inpatient care.
One may reasonably ask why it is necessary to define service areas at all. First, they are based on actual patient use patterns, which may cross zip code, county, and state boundaries. Second, they typically contain one or a few service providers who can observe (and be accountable for) how their actual treatment practices and outcomes compare with those of others. Finally, service areas enable standard epidemiological methods with use of numerators and denominators to calculate rates.

Methods

Data Sources

We used the VA Corporate Data Warehouse to develop our study data set and collected data on VA health care facilities as well as patient demographic, utilization, and diagnostic data. This study was approved by the VA Institutional Review Board of Northern New England and VA national data systems. A waiver of informed consent was obtained. All analyses were completed within the VA Informatics and Computing Infrastructure secure computing environment.

Construction of MHSAs and MHRRs

Our goal was to create empirically defined regions of adequate size and that contained populations around facilities that provide mental health care. Once defined, these regions were used to compare the quantity of mental health care received and to measure quality and outcomes. (To facilitate future use among VA stakeholders, we include a detailed description of our analysis approach in an online supplement to this article.) As described in the supplement, we constructed regions using mental health care that was provided by the VA (28).
We constructed MHSAs and MHRRs by examining patterns of VA mental health service use from 2008 through 2014. We restricted our analysis to veterans and VA facilities in the 50 U.S. states and the District of Columbia. Each MHSA includes one or more counties attributed to a VA facility (e.g., community-based outreach clinic or VA medical center) that provides outpatient mental health care. We chose county-level aggregation instead of zip codes, because many zip codes had few or no VA users. Each MHRR contains one or more MHSAs attributed to a VA facility (primarily a VA medical center) that provides inpatient or residential mental health care. Thus, an MHSA contains one or more counties, and an MHRR consists of one or more MHSAs.
The initial assignment of counties to MHSAs was completely empirical. Each county was attributed to the mental health facility that provided most of the outpatient mental health visits for VA users from that county. Next, we required that counties assigned to the same MHSA be contiguous. To accomplish this, we created county-demarcated maps displaying MHSA assignments and reassigned noncontiguous counties on the basis of proximity to facilities and the LI. An analogous approach was used to attribute MHSAs to MHRRs. Each MHSA was initially designated to the facility to which residents of the MHSA were most often admitted for mental health care stays. When more than one MHSA was attributed to an MHRR, we required that the regions be contiguous, using printed maps and the LI to reassign. Of the 3,143 U.S. counties, 69 were reassigned to different MHSAs, and eight MHSAs were reassigned to different MHRRs to enforce the contiguity rule.
For each MHSA and MHRR, we calculated the LI as a measure of assignment quality. We defined the LI as the number of mental health visits to the assigned mental health facility (numerator) divided by all mental health visits to any facility (denominator). We aggregated care received between 2008 and 2014 to develop services areas. We conducted a sensitivity analysis by using the LI to assess whether small areas changed over time (see online supplement). We found high concordance of LIs for both MHSAs and MHRRs between 2008–2014 and 2015–2018.

Outcomes

To assess service use outcomes, we used the same types of utilization as the inputs for service area creation, but we expanded the date range and added “fee” data, which reflected services paid for by the VA but delivered outside the VA. The outcomes analysis combined data from 2008 through 2018 to increase precision and provide more recent events. We added fee data so that the outcomes covered all care paid for directly by the VA. We created annual denominators based on veterans who had any VA use in the year. Use of all benefits-eligible users in an area as denominators would have produced biased results, because veterans’ reliance on VA versus private-sector health care varies according to locally available private options and other factors (29, 30). We did not restrict the denominator to VA users who accessed mental health services, because VA users vary regionally and demographically in how they access mental health care (31). We used indirect adjustment to account for differences among areas in age, gender, race, and ethnicity. Race was defined as White, Black, or unknown, and ethnicity was defined as Hispanic, not Hispanic, or unknown; age was categorized into five groups.
For MHSAs, we calculated both the number of mental health visits per year and the percentage of veterans with one or more mental health visits. For MHRRs, rates included both the sum of residential and acute inpatient days per person, as well as the percentage of individuals experiencing one or more stays during the year. For each stay, we used the actual dates of service, such that a single inpatient or residential stay that spanned 2 years would count as an admission in each year, and the days occurring in each year were allocated to the appropriate year. We attributed veterans annually to their most frequent zip code of residence. For both MHSAs and MHRRs, we mapped results by quintiles, with each quintile containing the same number of geographic units rather than the same number of people. We used this grouping because we were interested in regional variation that is independent of population size.

Results

Creation of MHSAs and MHRRs

Among the 1,021 facilities that provided any outpatient mental health care, 441 met our criteria to be designated as MHSAs, because they provided the plurality of mental health care to at least one county. A total of 3,909,080 patients with 52,372,303 outpatient mental health visits (in 2008–2014) were used to create these MHSAs. The overall national LI was 68.1%, and the unweighted mean±SD across MHSAs was 59.3%±16.4%. The mean number of counties per MHSA was 7.0±9.1. Among the 238 facilities with acute inpatient or residential stays, 115 met our criteria to be designated as MHRRs. A total of 337,193 patients with 845,193 inpatient mental health stays (2008–2014) were used to create these MHRRs. The overall national LI was 68.8%, and the mean across MHRRs was 67.8%±12.7%. The mean number of MHSAs per MHRR was 3.8±2.6.

Outpatient Mental Health Visits

VA users had a mean of 1.98±7.22 outpatient mental health visits per year (in 2008–2018). Almost one-third of all VA users (33.2%) had at least one mental health visit in any given year. Outpatient mental health service use exhibited substantial regional variation; the lowest quintile of MHSAs had an adjusted mean of 0.88±0.18 visits, compared with 3.14±0.85 for the highest quintile (Table 1). The adjusted percentages of users with one or more visits in a year for the lowest and highest quintiles were 16.8% and 58.5%, respectively.
TABLE 1. Annual rates (2008–2018) of mental health visits per Department of Veterans Affairs (VA) mental health service area and acute inpatient and residential stays per VA mental health referral region, by quintilea
 No. of days with visit or stay% of patients with any visit
Service and quintileNMSDNMSD
Outpatient visits      
Quintile      
  17,381,215.88.189,342,73316.82.73
  211,113,1241.31.1012,838,89723.21.36
  314,462,3371.66.1014,693,91028.31.64
  411,282,5272.05.1511,699,52836.63.33
  516,455,6963.14.8512,119,83258.514.63
Acute and residential stays      
 Quintile      
  111,882,667.29.0514,329,8451.1.18
  213,516,842.44.0412,424,9981.5.08
  312,880,646.58.0512,146,8351.7.06
  412,120,171.86.1012,573,9111.9.09
  510,294,5631.791.579,219,3002.8.87
a
N is the number of person-years observed in each quintile. For outpatient visits, the mean and SD were calculated among mental health service areas within each quintile and are not weighted. For both measures of service use, quintiles contain an equal number of mental health service areas or mental health referral regions. Quintiles were calculated for each of the four outcomes separately, resulting in variation in Ns by quintile.
Figure 1 shows the geographic variation in mean number of outpatient mental health visits per year on a national map revealing regional patterns. For example, VA users in the upper Midwest generally had more outpatient mental health visits than those in the Southeast. Figure 2 shows as a turnip plot the annual percentage of VA users in each MHSA who received an outpatient mental health visit. The points at the top represent a cluster of five MHSAs in southwest Florida where almost all VA users had a mental health visit each year.
FIGURE 1. Geographic variation in number of outpatient mental health visits per person-year (2008–2018), by Department of Veterans Affairs mental health service area (N=441)a
aAdjusted for age, gender, race, and ethnicity. Quintiles contain an equal number of mental health service areas. Apparent overlap among some of the ranges is due to rounding.
FIGURE 2. Percentage of users of mental health services with at least one outpatient mental health visit in a year (2008–2018), by Department of Veterans Affairs mental health service area (N=441)a
aAdjusted for age, gender, race, and ethnicity. Percentages were adjusted for demographic differences, so they can can be >100% or <0%.

Residential and Acute Inpatient Stays

VA users had a mean of 0.69±9.13 total days of combined residential and inpatient days per year (2008–2018). These days were concentrated among the 1.7% of all VA users who had at least one stay in any given year. Regional variation was substantial, with VA users in the lowest quintile of MHRRs having an adjusted mean of 0.29±0.05 days, compared with 1.79±1.57 days for those in the highest quintile. The adjusted percentages of users with ≥1 days in a year for the lowest and highest quintiles were 1.1% and 2.8%, respectively (Table 1).
Figure 3 displays the regional variation in combined residential and acute inpatient days at the MHRR level. Notably, areas in the highest quintile abutted areas in the lowest. We note that VA users in the Northeast generally had higher rates of residential and acute inpatient days than those in the Mountain West.
FIGURE 3. Geographic variation in mental health residential and acute inpatient days per person-year (2008–2018), by Department of Veterans Affairs mental health referral region (N=115)a
aAdjusted for age, gender, race, and ethnicity. Quintiles contain equal number of mental health service areas. Apparent overlap among some of the ranges is due to rounding.
Figure 4 shows a turnip plot of the annual percentage of VA users in each MHRR who incurred at least 1 day in an acute or residential facility in the year. Noticeably, the top point represents a single MHRR covering parts of northern California and southern Oregon where 5% of VA users spent at least 1 day per year in a VA residential or inpatient mental health setting.
FIGURE 4. Percentage of users of mental health services with at least one residential or acute inpatient mental health stay in a year (2008–2018), by Department of Veterans Affairs mental health referral region (N=115)a
aAdjusted for age, gender, race, and ethnicity.

Discussion

Using VA administrative data and small area analysis of utilization to identify and evaluate variation in the use of mental health services within the VA system, we created two geographic tools, MHSAs and MHRRs. In our illustrative case example examining outpatient visits as well as residential and acute inpatient stays, we identified large geographic variation in mental health service utilization rates that might represent underutilization, overutilization, or a combination of both. Although patient needs may vary geographically, it is unlikely that differences on the order of threefold and greater between top and bottom quintiles can be explained solely by patient needs. Seminal small area analysis studies that used general medical HSAs have demonstrated substantial geographic variation in health care utilization (2, 3), and small area analysis has been widely applied to health care claims data (12, 13). However, only Watts et al. (19) adapted small area analysis to mental health services utilization, with the creation of psychiatric service areas for inpatient care. As in the study by Watts and colleagues (19), we created valid representations of geographic patterns of mental health stays (the LI was 69% for stays in both Watts et al. and the present study) and identified substantial geographic variation in these mental health stays. Watts and colleagues examined inpatient psychiatric admissions in northern New England, and we evaluated both inpatient and outpatient mental health service utilization across all 50 U.S. states and the District of Columbia.
Our work had several limitations. First, we created service areas that were based on VA-provided mental health care for veterans. These utilization regions would likely differ from those based on civilian mental health care financed by Medicare, Medicaid, or private insurance. Likewise, many VA users receive care outside the VA system by fee-basis or covered by a payer other than the VA. It would have been difficult to include fee-basis data to create service areas because the location of facilities is often unknown. We also preferred service areas that are directly linked to VA facilities. We chose county-level aggregation rather than zip codes as our smallest unit of analysis. In a large county with multiple facilities that are geographically disparate, our method of attribution may lack precision. However, only 5% of counties had an LI <30% for outpatient care. Third, although the VA is a national health system, its mental health coding practices vary across regions and within VA administrative data. The quality of encounter documentation may have affected the accuracy of our results. A general assumption of small area analysis is that individuals do not move specifically for the provision of health care. It is possible that veterans with a serious mental illness resulting in frequent stays in facilities moved to be closer to a preferred facility or simply declared the facility as their residence address, driving up utilization rates locally, as perhaps seen in a single MHRR in the Northwest. Finally, inpatient mental health stays can be defined in more than one way. In this study, we combined acute inpatient and residential stays to generate MHRRs. Residential stays tend to be longer than acute inpatient stays, but for attribution purposes, we counted stays rather than total days. Therefore, variation in the use of facilities should have had little effect on attribution.

Conclusions

Using a VA-based model, we constructed a valid geographic tool for small area analysis of utilization of mental health services. We freely distribute this tool for use by VA stakeholders and researchers (available at https://github.com/VAvtmudhog/mental_health_regions.git). Our study found substantial national variation in the delivery of mental health services to veterans that hitherto had not been reported. This variation could result from multiple sources, including differences in need, demand, or local practice norms. Future research could compare health outcomes among regions with differing care practices. For example, low-quality outpatient services may decrease utilization but increase inpatient need. Further research into population, treatment, and provider-level characteristics will be important for understanding mental health utilization patterns. Use of our attribution methods with non-VA data may elucidate patterns of mental health service use across U.S. health care. In the future, policy makers could choose to wield these tools to allocate the supply and location of facilities and to compare quality and outcomes.

Footnote

This work was funded by grant ORH15533 from the VA Office of Rural Health to Dr. Shiner. The opinions expressed are those of the authors and not necessarily those of the VA or the VA Office of Rural Health.

Supplementary Material

File (appi.ps.202000130.ds001.pdf)

References

1.
Goodman DC, Green GR: Assessment tools: small area analysis. Am J Med Qual 1996; 11:S12–S14
2.
Wennberg J, Gittelsohn A: Small area variations in health care delivery. Science 1973; 182:1102–1108
3.
Wennberg JE, Freeman JL, Culp WJ: Are hospital services rationed in New Haven or over-utilised in Boston? Lancet 1987; 1:1185–1189
4.
Wennberg JE: On patient need, equity, supplier-induced demand, and the need to assess the outcome of common medical practices. Med Care 1985; 23:512–520
5.
Wennberg JE: Future directions for small area variations. Med Care 1993; 31(suppl):YS75–YS80
6.
Wennberg JE, Barnes BA, Zubkoff M: Professional uncertainty and the problem of supplier-induced demand. Soc Sci Med 1982; 16:811–824
7.
Fisher ES, Wennberg DE, Stukel TA, et al: The implications of regional variations in Medicare spending: part 2. health outcomes and satisfaction with care. Ann Intern Med 2003; 138:288–298
8.
Fisher ES, Wennberg DE, Stukel TA, et al: The implications of regional variations in Medicare spending: part 1. the content, quality, and accessibility of care. Ann Intern Med 2003; 138:273–287
9.
Stukel TA, Lucas FL, Wennberg DE: Long-term outcomes of regional variations in intensity of invasive vs medical management of Medicare patients with acute myocardial infarction. JAMA 2005; 293:1329–1337
10.
Wennberg JE, Fisher ES, Skinner JS: Geography and the debate over Medicare reform. Health Aff 2002; (suppl Web Exclusives, W96–114)
11.
Center for Evaluative Clinical Sciences: The Dartmouth Atlas of Health Care. Chicago, American Hospital Publishing, 1996
12.
Mercuri M, Gafni A: Medical practice variations: what the literature tells us (or does not) about what are warranted and unwarranted variations. J Eval Clin Pract 2011; 17:671–677
13.
Mercuri M, Gafni A: Examining the role of the physician as a source of variation: are physician-related variations necessarily unwarranted? J Eval Clin Pract 2018; 24:145–151
14.
Mulley AG: Inconvenient truths about supplier induced demand and unwarranted variation in medical practice. BMJ 2009; 339:b4073
15.
Schang L, Morton A, DaSilva P, et al: From data to decisions? Exploring how healthcare payers respond to the NHS Atlas of Variation in Healthcare in England. Health Policy 2014; 114:79–87
16.
Harrison R, Manias E, Mears S, et al: Addressing unwarranted clinical variation: a rapid review of current evidence. J Eval Clin Pract 2019; 25:53–65
17.
Drake R, Skinner J, Goldman HH: What explains the diffusion of treatments for mental illness? Am J Psychiatry 2008; 165:1385–1392
18.
Hendryx MS, Urdaneta ME, Borders T: The relationship between supply and hospitalization rates for mental illness and substance use disorders. J Ment Health Adm 1995; 22:167–176
19.
Watts BV, Shiner B, Klauss G, et al: Supplier-induced demand for psychiatric admissions in Northern New England. BMC Psychiatry 2011; 11:146
20.
Hendryx MS, Rohland BM: A small area analysis of psychiatric hospitalizations to general hospitals: effects of community mental health centers. Gen Hosp Psychiatry 1994; 16:313–318
21.
Curtis S, Congdon P, Almog M, et al: County variation in use of inpatient and ambulatory psychiatric care in New York State 1999–2001: need and supply influences in a structural model. Health Place 2009; 15:568–577
22.
Almog M, Curtis S, Copeland A, et al: Geographical variation in acute psychiatric admissions within New York City 1990–2000: growing inequalities in service use? Soc Sci Med 2004; 59:361–376
23.
Okumura Y, Sakata N, Tachimori H, et al: Geographical variation in psychiatric admissions among recipients of public assistance. J Epidemiol 2019; 29:264–271
24.
Weeks WB, Ventelou B, Paraponaris A: Rates of admission for ambulatory care sensitive conditions in France in 2009–2010: trends, geographic variation, costs, and an international comparison. Eur J Health Econ 2016; 17:453–470
25.
Ettner SL, Hermann RC: Inpatient psychiatric treatment of elderly Medicare beneficiaries. Psychiatr Serv 1998; 49:1173–1179
26.
Vallon KR, Foti ME, Langman-Dorwart N, et al: Comprehensive case management in the private sector for patients with severe mental illness. Psychiatr Serv 1997; 48:910–914
27.
Dieleman JL, Baral R, Birger M, et al: US spending on personal health care and public health, 1996–2013. JAMA 2016; 316:2627–2646
28.
National Academies of Sciences, Engineering, and Medicine: Evaluation of the Department of Veterans Affairs Mental Health Services. Washington, DC, National Academies Press, 2018
29.
Vaughan Sarrazin M, Rosenthal GE, Turvey CL: Empirical-based typology of health care utilization by Medicare eligible veterans. Health Serv Res 2018; 53(suppl 3):5181–5200
30.
West AN, Weeks WB, Charlton ME: Differences among states in rural veterans’ use of VHA and non-VHA hospitals. J Rural Health 2017; 33:32–40
31.
Johnson CE, Bush RL, Harman J, et al: Variation in utilization of health care services for rural VA enrollees with mental health–related diagnoses. J Rural Health 2015; 31:244–253

Information & Authors

Information

Published In

Go to Psychiatric Services
Go to Psychiatric Services
Psychiatric Services
Pages: 384 - 390
PubMed: 33530729

History

Received: 28 February 2020
Revision received: 6 May 2020
Revision received: 19 June 2020
Revision received: 24 July 2020
Accepted: 5 August 2020
Published online: 3 February 2021
Published in print: April 01, 2021

Keywords

  1. Epidemiology
  2. Quality of care
  3. Veterans
  4. Small area analysis
  5. Mental health services

Authors

Details

Daniel J. Gottlieb, B.S., M.S. [email protected]
Department of Veterans Affairs (VA) Medical Center, White River Junction, Vermont.
Bradley V. Watts, M.D., M.P.H.
Department of Veterans Affairs (VA) Medical Center, White River Junction, Vermont.
Talya Peltzman, M.S.
Department of Veterans Affairs (VA) Medical Center, White River Junction, Vermont.
Natalie B. V. Riblet, M.D., M.P.H.
Department of Veterans Affairs (VA) Medical Center, White River Junction, Vermont.
Sarah Cornelius, B.S.
Department of Veterans Affairs (VA) Medical Center, White River Junction, Vermont.
Jenna A. Forehand, M.D., M.P.H.
Department of Veterans Affairs (VA) Medical Center, White River Junction, Vermont.
Brian Shiner, M.D., M.P.H.
Department of Veterans Affairs (VA) Medical Center, White River Junction, Vermont.

Notes

Send correspondence to Mr. Gottlieb ([email protected]).

Competing Interests

Dr. Shiner reports serving in the role of subject matter expert for research grants to his institution from Good Ventures and Janssen. The other authors report no financial relationships with commercial interests.

Metrics & Citations

Metrics

Citations

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format
Citation style
Style
Copy to clipboard

View Options

View options

PDF/EPUB

View PDF/EPUB

Get Access

Login options

Already a subscriber? Access your subscription through your login credentials or your institution for full access to this article.

Personal login Institutional Login Open Athens login
Purchase Options

Purchase this article to access the full text.

PPV Articles - Psychiatric Services

PPV Articles - Psychiatric Services

Not a subscriber?

Subscribe Now / Learn More

PsychiatryOnline subscription options offer access to the DSM-5-TR® library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing [email protected] or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

Media

Figures

Other

Tables

Share

Share

Share article link

Share