Skip to main content
Full access
Articles
Published Online: 8 December 2021

Characteristics of Transgender Individuals With Emergency Department Visits and Hospitalizations for Mental Health

Abstract

Objective:

Transgender individuals experience significant oppression resulting in mental health disparities. Factors associated with their need for acute mental health care are unknown. This study compared characteristics of transgender individuals who presented for acute mental health care with population-based comparison samples.

Methods:

This cross-sectional study examined transgender individuals who had a mental health–related emergency department (ED) visit (N=728) or hospitalization (N=454). Transgender individuals were identified, and their data were linked with health administrative data. The transgender ED and hospitalization samples were each compared with two samples: all individuals in Ontario who had an ED visit or hospitalization (unmatched) and individuals matched on age, region of residence, and mental health care utilization history. Individuals’ sociodemographic and clinical factors were compared.

Results:

After matching, transgender individuals in the ED sample were more likely than those in the comparison group to be in the lowest neighborhood income quintile (37% versus 27%) and the highest residential instability quintile (47% versus 38%) and to be diagnosed as having a mood (26% versus 19%) or personality disorder (4% versus 1%). Transgender individuals in the hospitalization sample were more likely to be in the lowest neighborhood income quintile (36% versus 27%) and the highest residential instability quintile (45% versus 35%) and to be diagnosed as having a mood (40% versus 35%) or personality disorder (5% versus 2%).

Conclusions:

Transgender individuals who accessed acute mental health care had unique sociodemographic and clinical factors associated with their presentation that persisted after matching. More research into the factors associated with their acute care presentation is warranted, including how experiences of marginalization play a role.

HIGHLIGHTS

Indicators of socioeconomic marginalization (living in areas of low income and high residential instability and material deprivation) were associated with samples of transgender individuals who had a mental health–related emergency department (ED) visit or hospitalization.
Transgender individuals who presented for a psychiatric ED visit were more likely to be diagnosed as having a mood or personality disorder and less likely to have a substance-related disorder than were individuals in population-based comparison groups.
Transgender individuals who had a psychiatric hospitalization were more likely to be admitted for a mood or personality disorder and less likely to be admitted for a psychotic or substance-related disorder than were individuals in population-based comparison groups.
Transgender people are individuals whose gender identity differs from their sex assigned at birth (1). They are estimated to represent at least 0.5% of the population globally (2, 3). International studies have found a two- to fivefold increase in diagnoses of depression and anxiety among transgender people compared with cisgender individuals (35), with 10-fold increases in the rate of suicide attempts (3, 6). High rates of mental illness, substance use, and suicidality are related to experiences of marginalization and oppression, including experiences of transphobia, violence, lack of social support, barriers to education, homelessness, and unemployment (3, 79). The minority stress model posits that those with marginalized identities, including transgender people, face chronically high levels of stress due to discrimination, which leads to increased rates and severity of general medical and mental illness (7, 8, 10, 11).
Higher rates of mental illness among transgender individuals likely produce greater need for acute mental health care, including emergency department (ED) visits and hospitalizations. Health administrative data can be useful to examine patterns of mental health care access for populations. Recent studies have explored transgender patients’ use of mental health care by using health administrative data in the United States and Canada (1216). Studies have found that transgender individuals were more likely to have had psychiatric outpatient visits, hospitalizations, and ED visits (1216) than were cisgender people. However, these studies have had several important limitations. One limitation was the use of ICD-9 diagnoses (gender identity disorders) and involvement with medical transition to identify transgender individuals in several U.S. studies (12, 13). These methods are not representative of many transgender people without these diagnoses and many who do not seek medical transition (i.e., gender-affirming hormone therapy or surgeries). One U.S. study used a convenience sample from one site, which often confers selection bias (14).
None of the prior studies clarified the factors and individual characteristics associated with the increased need for acute mental health care. Examining factors associated with this need can highlight contributors to mental illness that are amenable to intervention to improve mental health care for transgender people. Using linked health administrative data, this study aimed to compare characteristics of transgender individuals who had had a psychiatric hospitalization or ED visit in Ontario, Canada, with characteristics of population-based comparison samples.

Methods

Design and Setting

This cross-sectional study used linked health administrative data to compare characteristics of transgender individuals who had a psychiatric ED visit or a psychiatric hospitalization in Ontario with characteristics of individuals in the general population of acute psychiatric care users. This project was conducted by using linked health administrative data held at ICES. ICES is an independent, nonprofit research institute. Its legal status under Ontario’s health information privacy law allows it to collect and analyze health care and demographic data, without consent, for the purposes of health system evaluation, planning, and monitoring. The use of data in this project was authorized under section 45 of Ontario’s Personal Health Information Protection Act, which does not require review by a research ethics board. The linkage of external data to ICES for this project was approved by the research ethics board at the University of Toronto (Research Information System protocol 38210).

Data Sources

The ICES data repository includes individual-level longitudinal data on most publicly funded health care services for individuals covered by Ontario health insurance. These data sets were linked by using unique encoded identifiers and were analyzed at ICES. Data resources used in this study included the Registered Persons Database, which includes demographic information for all individuals in Ontario with a health card number. The Ontario Health Insurance Plan database includes physician billing information. The National Ambulatory Care Reporting System contains information about ED visits. The Ontario Mental Health Reporting System database includes information from psychiatric hospitalizations in hospital beds designated for mental health care. The Hospital Discharge Abstract Database captures information from medical hospitalizations in nonmental health hospital beds. The Ontario Marginalization Index (ON-Marg) is a provincial adaptation of the Canadian Marginalization Index and uses the smallest census area–level data to create validated variables measuring multidimensional aspects of marginalization through four dimensions: dependency, residential instability, material deprivation, and ethnic concentration (17).

Study Population

All individuals age ≥16 who were discharged from a psychiatric hospitalization (hospitalized sample) or mental health–related ED visit (ED sample) in Ontario between January 1, 2012, and December 31, 2018, were eligible to be in the study population. The index discharge date was the individual’s first discharge within the period. Patients were excluded if they were not Ontario residents, did not have a valid health card number for data linkage, or were missing valid data for discharge diagnosis, age, or their Ontario region of residence (i.e., Local Health Integration Network [LHIN]) during the study period.

Identifying Transgender Individuals

Transgender individuals were systematically identified through data obtained from electronic medical records (EMRs) of four outpatient health clinics in three cities across Ontario (Thunder Bay, Ottawa, Toronto). Each patient was asked to describe their gender identity by answering questions on the clinic’s intake form. The manager of health information at each clinic identified all transgender patients from 2012 to 2016 through their EMR. Individuals’ Ontario health insurance number and date of birth were used to link individuals to administrative databases at ICES. This process has been previously described (16). All transgender individuals were identified from the study population and included in the two transgender samples in this study.

Comparison Groups

Two comparison groups were created for each sample of transgender individuals to understand the ways in which the transgender population differs from the general Ontario population of acute care users (unmatched) and from a cisgender population from the same regions with similar demographic characteristics and history of mental health care (matched). In each matched comparison group, four individuals from the comparison group were found to match with each transgender individual on the basis of shared age, region of residence, and mental health care utilization history. Region of residence was a variable identifying in which of 14 LHINs the individual resided. LHINs are the health authorities responsible for regional administration of public health care services in Ontario. Individuals were placed into four categories of mental health care utilization history on the basis of their mental health service use in the 24 months prior: having any psychiatric hospitalization history, having no psychiatric hospitalization but any psychiatric ED visit history, having no history of psychiatric hospitalization or ED visit but any outpatient mental health visit history, or having none of the above. This categorization strategy uses patient’s use of acute psychiatric care to approximate the severity of prior mental illness (18).

Variables

The following sociodemographic variables were measured for each group: age, LHIN, rurality (derived from postal code), neighborhood-level income (measured in quintiles at the census tract level), and ON-Marg quintiles. Gender identity was not included because of the high proportion of records with unknown gender in the transgender sample (16). The clinical diagnosis for the ED visit or hospitalization was captured in one of seven psychiatric diagnostic categories used in previous studies (19). Prior health service use variables captured the number of prior mental health–related ED visits, hospitalizations, outpatient visits, and self-harm–related ED visits or hospitalizations in the 24 months before the index admission date.

Statistical Analysis

Descriptive and baseline characteristics (frequencies and means) were calculated across both samples. Differences between samples were explored by using chi-square tests and Student’s t tests, as appropriate. Statistical significance comparing samples was set to p<0.05 in two-tailed tests. All analyses were conducted with SAS, version 9.4.

Results

Transgender ED Sample

Comparing the transgender ED sample (N=728) with the unmatched general population of ED users (N=581,708), we found that the transgender ED sample was younger (mean±SD age=28.8±11.7 versus 38.3±18.1, t=21.90, df=731, p<0.001) and less rural (3% versus 14.4%, χ2=79.64, N=580,768, df=1, p<0.001). They were more likely to be in the lowest quintile for neighborhood income (37% versus 27.6%, χ2=30.91, N=582,436, df=5, p<0.001) and dependency (30% versus 23.2%, χ2=37.95, N=571,637, df=4, p<0.001) and in the highest quintile for residential instability (47% versus 29.2%, χ2=118.47, N=571,637, df=4, p<0.001), material deprivation (33% versus 27.6%, χ2=9.58, N=571,637, df=4, p=0.048), and ethnic concentration (29% versus 22.1%, χ2=78.78, N=571,637, df=4, p<0.001) (Table 1). The transgender ED sample was more likely than the unmatched general population of ED users to be diagnosed as having a mood disorder (26% versus 15.6%), schizophrenia or psychotic disorder (5% versus 3.4%), personality disorder (4% versus 0.7%), and deliberate self-harm (7% versus 5.2%) (χ2=208.83, N=582,436, df=6, p<0.001) (Table 2). They were less likely to be diagnosed as having an anxiety, trauma, or obsessive-compulsive–related disorder (38% versus 46.0%) or a substance-related disorder (14% versus 25.0%). The transgender ED sample had much greater prior psychiatric service use than did the sample of unmatched general population of ED users, including having more prior hospitalizations (21% versus 8.1%, χ2=172.73, N=582,436, df=1, p<0.001), ED visits (16% versus 9.9%, χ2=30.27, N=582,436, df=1, p<0.001), outpatient visits (83% versus 57.3%, χ2=198.21, N=582,436, df=1, p<0.001), and visits for deliberate self-harm (7% versus 2.3%, χ2=81.92, N=582,436, df=1, p<0.001) (Table 3).
TABLE 1. Sociodemographic characteristics of the transgender group and two comparison groups, by mental health care utilizationa
 Transgender ED
sample (N=728)
Unmatched comparison
sample (N=581,708)
 Matched comparison
sample (N=2,912)
 
CharacteristicN%N%pbN%pb
Age at admission (M±SD)28.8±11.7 38.3±18.1 <.00129.0±11.7 .76
Rural residence    <.001  <.001
 Rural (population <10,000)20383,60414.4 2479 
 Urban (population ≥10,000)70497496,44085.3 2,65391 
Neighborhood income quintile    <.001  <.001
 Q1 (poorest)26637160,32027.6 77427 
 Q213919123,31321.2 56319 
 Q311015108,75318.7 51818 
 Q41051497,22916.7 51718 
 Q5 (wealthiest)1031488,88415.3 51818 
ON-Marg dependency quintile    <.001  .67
 Q1 (least dependent)21630135,07023.2 90131 
 Q216723113,13119.4 70624 
 Q313719103,31617.8 50817 
 Q49413102,66517.6 35512 
 Q5 (most dependent)10615116,73520.1 38413 
ON-Marg residential instability quintile    <.001  <.001
 Q1 (least unstable)701086,01314.8 40514 
 Q261891,17215.7 38513 
 Q311015101,31417.4 41414 
 Q413819122,73421.1 55619 
 Q5 (most unstable)34147169,68429.2 1,09438 
ON-Marg material deprivation quintile    .048  <.001
 Q1 (least deprived)1081589,74415.4 58020 
 Q21131698,19416.9 46616 
 Q311916105,15518.1 51718 
 Q414119117,44020.2 53819 
 Q5 (most deprived)23933160,38427.6 75326 
ON-Marg ethnic concentration quintile    <.001  .78
 Q1 (lowest ethnic concentration)7711112,49919.3 33612 
 Q29213109,29818.8 39514 
 Q314520106,61118.3 56720 
 Q419627114,07719.6 77527 
 Q5 (highest ethnic concentration)21029128,43222.1 78127 
 Transgender
hospitalized sample
(N=454)
Unmatched
comparison sample
(N=217,507)
 Matched
comparison sample
(N=1,808)
 
Age at admission (M±SD)28.3±11.9 40.9±18.5 <.00128.3±11.9 .97
Rural residence    <.001  .02
 Rural (population <10,000)17426,92712.4 1227 
 Urban (population ≥10,000)43596190,07587.4 1,68293 
Neighborhood income quintile    .002  <.001
 Q1 (poorest)1633662,64228.8 48127 
 Q21082446,54321.4 36020 
 Q3711639,42918.1 33719 
 Q4521235,32516.2 28416 
 Q5 (wealthiest)571332,50914.9 33118 
ON-Marg dependency quintile    <.001  .18
 Q1 (least dependent)1373048,24422.2 56731 
 Q2982242,60219.6 40623 
 Q3952139,06018.0 30317 
 Q4521238,52217.7 25814 
 Q5 (most dependent)661545,62021.0 24313 
ON-Marg residential instability quintile    <.001  <.001
 Q1 (least unstable)471030,27713.9 25814 
 Q238833,06215.2 24914 
 Q3601336,93317.0 28316 
 Q4972145,86421.1 36020 
 Q5 (most unstable)2064567,91231.2 62735 
ON-Marg material deprivation quintile    .34  .023
 Q1 (least deprived)701532,25514.8 32118 
 Q2641435,50016.3 31818 
 Q3711638,70517.8 32118 
 Q4962144,36820.4 35520 
 Q5 (most deprived)1473263,22029.1 46226 
ON-Marg ethnic concentration quintile    <.001  .94
 Q1 (lowest ethnic concentration)42941,01018.9 18210 
 Q2601341,80119.2 24514 
 Q3791740,70918.7 33018 
 Q41252842,36419.5 48527 
 Q5 (highest ethnic concentration)1423148,16422.1 53530 
a
The two comparison samples used to match the transgender sample included an unmatched group and a group matched 1:4 by age, Local Health Integration Network, and mental health care utilization history. ED, emergency department; ON-Marg, Ontario Marginalization Index.
b
Compared with transgender sample.
TABLE 2. Diagnoses of the transgender group and two comparison groups, by mental health care utilizationa
 Transgender ED sample
(N=728)
Unmatched comparison sample
(N=581,708)
Matched comparison
sample (N=2,912)
DiagnosisN%N%N%
Mood disordersb1912690,52815.656619
Anxiety, trauma/stressor, and obsessive-compulsive–related disorders27838267,86846.01,11238
Schizophrenia and psychotic disorders36519,8743.41485
Substance-related disorders9814145,61025.072925
Personality disorders2644,013.7421
Deliberate self-harm54730,0535.21887
Other mental disorders45623,7624.11274
 Transgender
hospitalized
sample (N=454)
Unmatched comparison sample (N=217,507)Matched comparison sample (N=1,808)
Mood disordersb1824077,34635.662635
Anxiety, trauma/stressor, and obsessive-compulsive–related disorders631429,77913.727315
Schizophrenia and psychotic disorders601335,96816.533519
Substance-related disorders541245,36320.932418
Personality disorders2453,8891.8412
Deliberate self-harm23512,9626.01076
Other mental disorders481112,2005.61026
a
The two comparison samples used to match the transgender sample included an unmatched group and a group matched 1:4 by age, Local Health Integration Network, and mental health care utilization history. ED, emergency department.
b
p<.001 for all comparisons, derived from χ2 tests comparing the comparison samples with the transgender sample.
TABLE 3. Prior mental health service use for the transgender group and two comparison groups, by mental health care utilizationa
 Transgender ED
sample (N=728)
Unmatched
comparison
sample
(N=581,708)
 Matched
comparison
sample (N=2,912)
 
Service useN%N%pbN%pb
Mental health hospitalizations in past 2 years        
 Any1562147,1788.1<.001624211.00
 M±SD.4±1.1 .1±.6 <.001.4±1.0 .27
Mental health ED visits in past 2 years        
 Any1161657,3069.9<.00142515.36
 M±SD.3±1.4 .2±.9 .001.3±1.0 .19
Mental health outpatient visits in past 2 years        
 Any60583333,19857.3<.0012,420831.00
 M±SD9.1±12.7 4.9±11.8 <.0018.3±15.5 .16
Nonfatal self-harm in past 2 years        
 Any53713,2162.3<.0011565.046
 M±SD.1±.6 .0±.3 <.001.1±.4 .05
 Transgender hospitalized sample (N=454)Unmatched comparison sample (N=217,507) Matched comparison sample (N=1,808) 
Mental health hospitalizations in past 2 years        
 Any741626,00912.0.00428816.85
 M±SD.3±1.0 .2 ±.7 .02.2 ±.8 .32
Mental health ED visits in past 2 years        
 Any2144771,87133.0<.00181445.42
 M±SD1.1±2.2 .7±2.3 <.001.9±1.8 .06
Mental health outpatient visits in past 2 years        
 Any40689165,40076.0<.0011,62490.80
 M±SD10.7±13.0 8.5±15.0 <.00110.1±15.8 .38
Nonfatal self-harm in past 2 years        
 Any37812,3795.7.0241327.54
 M±SD.1 ±.5 .1 ±.4 .05.1 ±.4 .29
a
The two comparison samples used to match the transgender sample included an unmatched group and a group matched 1:4 by age, Local Health Integration Network, and mental health care utilization history. ED, emergency department.
b
Compared with transgender sample.
Comparing the transgender ED sample with the matched comparison sample of ED users (N=2,912), we found that no significant differences persisted after matching in the dependency or ethnic concentration quintiles. However, the transgender ED sample remained more likely than the matched comparison sample of ED users to be in the lowest neighborhood income quintile (37% versus 27%, χ2=31.00, N=3,640, df=5, p<0.001), highest residential instability quintile (47% versus 38%, χ2=32.17, N=3,574, df=4, p<0.001), and highest material deprivation quintile (33% versus 26%, χ2=19.19, N=3,574, df=4, p<0.001) (Table 1). The transgender ED sample remained more likely than the matched comparison sample of ED users to be diagnosed as having a mood disorder (26% versus 19%) or personality disorder (4% versus 1%) and less likely to be diagnosed as having a substance-related disorder (14% versus 25%) (χ2=66.33, N=3,640, df=6, p<0.001) (Table 2). The differences in diagnoses of anxiety, trauma, or obsessive-compulsive–related disorders and psychotic disorders did not persist after matching. None of the differences in prior mental health service utilization between the transgender ED sample and the unmatched general population of ED users persisted after matching, except that the transgender ED sample still had more prior self-harm (7% versus 5%, χ2=3.98, N=3,640, df=1, p=0.046) (Table 3).

Transgender Hospitalized Sample

Comparing the transgender hospitalized sample (N=454) with the unmatched general population of hospitalized individuals (N=217,507), we found that the transgender hospitalized sample was younger (age=28.3±11.9 versus 40.9±18.5, t=22.30, df=458, p<0.001) and less rural (4% versus 12.4%, χ2=31.07, N=217,454, df=1, p<0.001). They were more likely to be in the lowest quintile for neighborhood income (36% versus 28.8%, χ2=19.10, N=217,961, df=5, p=0.002) and dependency (30% versus 22.2%, χ2=35.07, N=214,496, df=4, p<0.001) and in the highest quintile for residential instability (45% versus 31.2%, χ2=50.75, N=214,496, df=4, p<0.001) and ethnic concentration (31% versus 22.1%, χ2=63.07, N=214,496, df=4, p<0.001) (Table 1). The transgender hospitalized sample was more likely than the unmatched general population of hospitalized individuals to be diagnosed as having a mood disorder (40% versus 35.6%) or personality disorder (5% versus 1.8%) (χ2=74.46, N=217,961, df=6, p<0.001) (Table 2). They were less likely to be diagnosed as having schizophrenia or a psychotic disorder (13% versus 16.5%) or substance-related disorder (12% versus 20.9%). The transgender hospitalized sample had much greater prior psychiatric service use than did the unmatched general population of hospitalized individuals, including having more prior hospitalizations (16% versus 12.0%, χ2=8.11, N=217,961, df=1, p=0.004), ED visits (47% versus 33.0%, χ2=40.66, N=217,961, df=1, p<0.001), outpatient visits (89% versus 76.0%, χ2=44.58, N=217,961, df=1, p<0.001), and visits for deliberate self-harm (8% versus 5.7%, χ2=5.10, N=217,961, df=1, p=0.024) (Table 3).
Comparison of the transgender hospitalized sample with the matched comparison sample of hospitalized individuals (N=1,808) revealed no persistent differences in the dependency or ethnic concentration quintiles. However, the transgender hospitalized sample remained more likely to be in the lowest neighborhood income quintile (36% versus 27%, χ2=27.02, N=2,262, df=5, p<0.001) and the highest residential instability quintile (45% versus 35%, χ2=25.48, N=2,225, df=4, p<0.001). The transgender hospitalized sample was more likely to be in the highest material deprivation quintile than the matched comparison sample of hospitalized individuals (32% versus 26%, χ2=11.36, N=2,225, df=4, p=0.023) (Table 1). The transgender hospitalized sample remained more likely than the matched comparison sample of hospitalized individuals to be diagnosed as having a mood (40% versus 35%) or personality disorder (5% versus 2%) and less likely to be diagnosed as having schizophrenia or a psychotic disorder (13% versus 19%) or substance-related disorder (12% versus 18%) (χ2=42.42, N=2,262, df=6, p<0.001) (Table 2). None of the differences in prior mental health service utilization between the transgender hospitalized sample and the unmatched general population of hospitalized individuals persisted after matching (Table 3).

Discussion

Compared with the unmatched comparison group presenting for acute mental health care, transgender individuals in our samples were younger, were more likely to experience marginalization, had different diagnostic patterns for their acute mental health care presentation, and had more prior mental health care utilization (as an outpatient, in the ED, and for hospitalization). Matching was required to isolate the unique contribution of transgender status on sociodemographic and clinical factors that were not adequately explained by differences in age, region of residence, and prior mental health care utilization. Even after matching, data indicated that transgender individuals were more likely to live in lower-income neighborhoods and areas of greater residential instability and material deprivation. Transgender individuals were more likely to be diagnosed as having a mood disorder and twice as likely to be diagnosed as having a personality disorder during their acute mental health care presentation. They were less likely to be diagnosed as having a substance-related disorder and, among those who were hospitalized, less likely to be diagnosed as having a psychotic disorder. Transgender individuals in the ED sample were more likely to have presented to acute care for self-harm, even after we accounted for other differences in mental health care use through matching.
The diagnostic patterns in the transgender samples are consistent with the two- to fivefold higher prevalence of depression among transgender individuals than in the general population (35, 14, 15). Although transgender individuals also have increased rates of anxiety- and trauma-related disorder diagnoses (3, 14, 15, 20), this pattern was not reflected in our results. The multifold increase in personality disorder diagnoses we found in the transgender samples in this study may be partially explained by the minority stress model (11, 21). Symptoms and behaviors consistent with diagnostic criteria of borderline personality disorder may be better understood as reactions to stress and oppression experienced by members of minority groups (21, 22). A society that subscribes to a rigid sex-gender binary viewpoint (23), where transgender individuals are regularly misgendered and face daily discrimination and marginalization, creates environments that can produce such symptoms and behaviors in response. Diagnosis of borderline personality disorder is also prone to health care provider bias (24, 25), which may have influenced our results. Furthermore, transgender people are frequently pathologized, and those seeking medical transition are required to have a mental health assessment, both of which can lead to psychiatric diagnoses (26).
Our study provides evidence for an association between acute mental health care utilization and increased measures of marginalization in the transgender samples. Our study echoes previous U.S. research, which found that transgender inpatients were more likely to be in the lowest neighborhood income quartile than were cisgender inpatients (15), and extends that finding to transgender individuals presenting to the ED for mental health care. Our study clarifies that residential instability and material deprivation disproportionately affect transgender individuals presenting for acute psychiatric care. Residential instability refers to high rates of family or housing instability, whereas material deprivation assesses indicators of poverty and difficulty accessing basic material needs (27). That these findings were persistent after matching adds strength to the possibility that experiences of marginalization are an important contributor to acute mental health care utilization for transgender individuals. This possibility is consistent with evidence that high rates of mental illness among transgender people are associated with elevated rates of homelessness, unemployment, and poverty (3, 7, 8, 28, 29).
A strength of the study was the use of two comparison samples: one unmatched and one matched on key characteristics. This method allowed for an understanding of the ways transgender individuals differ from samples from the general population who access acute mental health care and of the unique contributions of transgender status to sociodemographic and clinical factors associated with acute mental health care presentation. The large sample of transgender individuals also allowed for adequate power to examine differences in multiple characteristics associated with psychiatric hospitalizations and ED visits for this population. In total, the unmatched samples are inclusive of nearly every psychiatric hospitalization and ED visit in Ontario within the study period. Unlike previous studies that have relied on diagnostic definitions and involvement with medical transition to identify transgender individuals (12, 13), the current study used self-reported gender identities to identify individuals, which is more representative of the total transgender population.
This study had several limitations. Transgender individuals were identified from clinics in larger cities, which may not be representative of individuals in smaller cities and rural areas. Because the unmatched comparison groups represented all regions in Ontario, geographic variation in psychiatric service availability and utilization may have affected results. Matching was thus important to control for regional differences. Some of the sociodemographic differences may reflect our specific sample of transgender individuals (16) and may not be characteristic of all transgender individuals with acute psychiatric care utilization. Because they represented a clinical population, individuals in the samples were also more likely to have had prior outpatient visits than other transgender individuals, which may limit generalizability of findings. Prior outpatient visits for transgender individuals can include assessments to facilitate access to medical transition. These assessments may differentially contribute to the number of prior outpatient visits for transgender samples. However, these visits should have limited impact on other measures of prior mental health care. Matching likely did not remove all variation in mental illness severity between transgender and comparison groups, which may have also affected results. Because transgender status was based on self-report, some individuals may not have disclosed their gender identity and thus would have been excluded from the transgender sample. The comparison samples likely included transgender individuals who were not identified as part of the transgender samples. However, the vast majority of individuals who comprised the comparison samples were likely to be cisgender individuals (13, 15).

Conclusions

This study found that transgender individuals presenting for acute mental health care were more likely to experience marginalization than cisgender individuals and to present to acute care with different diagnostic patterns. More research is warranted into the experiences of transgender individuals presenting for acute mental health care and the factors associated with their presentation, particularly in regard to how experiences of marginalization and discrimination may play a role.

Acknowledgments

The authors acknowledge Kinwah Fung, a research methodologist at ICES who provided important support and assistance in this study.

References

1.
Lam JSH, Abramovich A: Transgender-inclusive care. CMAJ 2019; 191:E79
2.
Crissman HP, Berger MB, Graham LF, et al: Transgender demographics: a household probability sample of US adults, 2014. Am J Public Health 2017; 107:213–215
3.
Winter S, Diamond M, Green J, et al: Transgender people: health at the margins of society. Lancet 2016; 388:390–400
4.
Rotondi NK, Bauer GR, Travers R, et al: Depression in male-to-female transgender Ontarians: results from the Trans PULSE Project. Can J Commun Ment Health 2011; 30:113–133
5.
Rotondi NK, Bauer GR, Scanlon K, et al: Prevalence of and risk and protective factors for depression in female-to-male transgender Ontarians: Trans PULSE Project. Can J Commun Ment Health 2011; 30:135–155
6.
Scanlon K, Travers R, Coleman T, et al: Ontario’s Trans Communities and Suicide: Transphobia is Bad for our Health. Trans PULSE e-Bulletin, November 12, 2010. http://transpulseproject.ca/research/ontarios-trans-communities-and-suicide. Accessed December 11, 2020
7.
Jäggi T, Jellestad L, Corbisiero S, et al: Gender minority stress and depressive symptoms in transitioned Swiss transpersons. Biomed Res Int (Epub April 19, 2018)
8.
Wilkinson L, Pearson J, Liu H: Educational attainment of transgender adults: does the timing of transgender identity milestones matter? Soc Sci Res 2018; 74:146–160
9.
Bauer GR, Scheim AI, Pyne J, et al: Intervenable factors associated with suicide risk in transgender persons: a respondent driven sampling study in Ontario, Canada. BMC Public Health 2015; 15:525
10.
Reisner SL, Poteat T, Keatley J, et al: Global health burden and needs of transgender populations: a review. Lancet 2016; 388:412–436
11.
Hatzenbuehler ML, Pachankis JE: Stigma and minority stress as social determinants of health among lesbian, gay, bisexual, and transgender youth: research evidence and clinical implications. Pediatr Clin North Am 2016; 63:985–997
12.
Progovac AM, Cook BL, Mullin BO, et al: Identifying gender minority patients’ health and health care needs in administrative claims data. Health Aff 2018; 37:413–420
13.
Progovac AM, Mullin BO, Creedon TB, et al: Trends in mental health care use in Medicare from 2009 to 2014 by gender minority and disability status. LGBT Health 2019; 6:297–305
14.
Reisner SL, Vetters R, Leclerc M, et al: Mental health of transgender youth in care at an adolescent urban community health center: a matched retrospective cohort study. J Adolesc Health 2015; 56:274–279
15.
Hanna B, Desai R, Parekh T, et al: Psychiatric disorders in the US transgender population. Ann Epidemiol 2019; 39:1–7.e1
16.
Abramovich A, de Oliveira C, Kiran T, et al: Assessment of health conditions and health service use among transgender patients in Canada. JAMA Netw Open 2020; 3:e2015036
17.
Lachaud J, Donnelly P, Henry D, et al: Characterising violent deaths of undetermined intent: a population-based study, 1999–2012. Inj Prev 2018; 24:424–430
18.
Klaassen Z, Wallis CJD, Chandrasekar T, et al: Cancer diagnosis and risk of suicide after accounting for prediagnosis psychiatric care: a matched-cohort study of patients with incident solid-organ malignancies. Cancer 2019; 125:2886–2895
19.
Gatov E, Koziel N, Kurdyak P, et al: Discharge and post-discharge outcomes of psychiatric inpatients with a lifetime history of exposure to interpersonal trauma: a population-based study. Gen Hosp Psychiatry 2020; 65:82–90
20.
Wanta JW, Niforatos JD, Durbak E, et al: Mental health diagnoses among transgender patients in the clinical setting: an all-payer electronic health record study. Transgend Health 2019; 4:313–315
21.
Anzani A, Panfilis C, Scandurra C, et al: Personality disorders and personality profiles in a sample of transgender individuals requesting gender‐affirming treatments. Int J Environ Res Public Health 2020; 17:5–7
22.
Goldhammer H, Crall C, Keuroghlian AS. Distinguishing and addressing gender minority stress and borderline personality symptoms. Harv Rev Psychiatry 2019; 27:317–325
23.
Morgenroth T, Sendén MG, Lindqvist A, et al: Defending the sex/gender binary: the role of gender identification and need for closure. Soc Psychol Personal Sci (Epub July 16, 2020)
24.
Eubanks-Carter C, Goldfried MR: The impact of client sexual orientation and gender on clinical judgments and diagnosis of borderline personality disorder. J Clin Psychol 2006; 62:751–770
25.
Rodriguez-Seijas C, Morgan TA, Zimmerman M: Is there a bias in the diagnosis of borderline personality disorder among lesbian, gay, and bisexual patients? Assessment 2021; 28:724–738
26.
Suess Schwend A: Trans health care from a depathologization and human rights perspective. Public Health Rev 2020; 41:3
27.
Matheson F, Moloney G, van Ingen T: 2016 Ontario Marginalization Index: User Guide. Toronto, St Michael’s Hospital and Public Health Ontario, 2018. https://www.publichealthontario.ca/-/media/documents/o/2017/on-marg-userguide.pdf
28.
Bauer GR, Pyne J, Francino MC, et al: Suicidality among trans people in Ontario: implications for social work and social justice. Serv Soc 2013; 59:35–62
29.
Abramovich A, Lam JSH, Chowdhury M: A transgender refugee woman experiencing posttraumatic stress disorder symptoms and homelessness. CMAJ 2020; 192:E9–E11

Information & Authors

Information

Published In

Go to Psychiatric Services
Go to Psychiatric Services
Psychiatric Services
Pages: 722 - 729
PubMed: 34875849

History

Received: 22 May 2021
Revision received: 13 August 2021
Revision received: 19 September 2021
Accepted: 22 October 2021
Published online: 8 December 2021
Published in print: July 2022

Keywords

  1. LGTBQ
  2. Emergency psychiatry
  3. Hospitalization
  4. Mental health systems/hospitals
  5. Transgender
  6. Marginalization

Authors

Details

June Sing Hong Lam, M.D. [email protected]
Centre for Addiction and Mental Health, Toronto (Lam, Abramovich, Zaheer, Kurdyak); Department of Psychiatry (Lam, Abramovich Zaheer, Kurdyak), Dalla Lana School of Public Health (Abramovich), and Institute of Health Policy, Management and Evaluation (Lam, Victor, Kurdyak), University of Toronto, Toronto;ICES, Toronto (Victor, Kurdyak).
Alex Abramovich, Ph.D.
Centre for Addiction and Mental Health, Toronto (Lam, Abramovich, Zaheer, Kurdyak); Department of Psychiatry (Lam, Abramovich Zaheer, Kurdyak), Dalla Lana School of Public Health (Abramovich), and Institute of Health Policy, Management and Evaluation (Lam, Victor, Kurdyak), University of Toronto, Toronto;ICES, Toronto (Victor, Kurdyak).
J. Charles Victor, M.Sc.
Centre for Addiction and Mental Health, Toronto (Lam, Abramovich, Zaheer, Kurdyak); Department of Psychiatry (Lam, Abramovich Zaheer, Kurdyak), Dalla Lana School of Public Health (Abramovich), and Institute of Health Policy, Management and Evaluation (Lam, Victor, Kurdyak), University of Toronto, Toronto;ICES, Toronto (Victor, Kurdyak).
Juveria Zaheer, M.D., M.Sc.
Centre for Addiction and Mental Health, Toronto (Lam, Abramovich, Zaheer, Kurdyak); Department of Psychiatry (Lam, Abramovich Zaheer, Kurdyak), Dalla Lana School of Public Health (Abramovich), and Institute of Health Policy, Management and Evaluation (Lam, Victor, Kurdyak), University of Toronto, Toronto;ICES, Toronto (Victor, Kurdyak).
Paul Kurdyak, M.D., Ph.D.
Centre for Addiction and Mental Health, Toronto (Lam, Abramovich, Zaheer, Kurdyak); Department of Psychiatry (Lam, Abramovich Zaheer, Kurdyak), Dalla Lana School of Public Health (Abramovich), and Institute of Health Policy, Management and Evaluation (Lam, Victor, Kurdyak), University of Toronto, Toronto;ICES, Toronto (Victor, Kurdyak).

Notes

Send correspondence to Dr. Lam ([email protected]).

Competing Interests

Parts of this article are based on data and information compiled and provided by the Canadian Institute for Health Information and the Ontario Ministry of Health and Long-Term Care. The analyses, conclusions, opinions, and statements expressed herein are solely those of the authors and do not reflect those of the funding or data sources; no endorsement is intended or should be inferred. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Competing Interests

The authors acknowledge Kinwah Fung, a research methodologist at ICES who provided important support and assistance in this study.

Competing Interests

The authors report no financial relationships with commercial interests.

Funding Information

This study was supported by ICES, which is funded by an annual grant from the Ontario Ministry of Health and the Ministry of Long-Term Care, and received funding from the Canadian Institutes of Health Research (FBD-175820).

Metrics & Citations

Metrics

Citations

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format
Citation style
Style
Copy to clipboard

View Options

View options

PDF/EPUB

View PDF/EPUB

Login options

Already a subscriber? Access your subscription through your login credentials or your institution for full access to this article.

Personal login Institutional Login Open Athens login

Not a subscriber?

Subscribe Now / Learn More

PsychiatryOnline subscription options offer access to the DSM-5-TR® library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing [email protected] or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

Media

Figures

Other

Tables

Share

Share

Share article link

Share