Skip to main content
Full access
Articles
Published Online: 24 October 2016

Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

Abstract

Objective:

Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined.

Method:

NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined.

Results:

NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3.

Conclusions:

Mapping the temporal expression of genes during human brain development provides vital insight into gene function and identifies critical sensitive periods whereby genetic factors may influence risk for psychiatric disease. Here the authors provide comprehensive insight into the transcriptional landscape of the psychiatric risk gene, NRG3, in human neocortical development and expand on previous findings in schizophrenia to identify increased expression of developmentally and genetically regulated isoforms in the brain of patients with mood disorders. Principally, the finding that NRG3 classes II and III are brain-specific isoforms predicted by rs10748842 risk genotype and are increased in mood disorders further implicates a molecular mechanism of psychiatric risk at the NRG3 locus and identifies a potential developmental role for NRG3 in bipolar disorder and major depression. These observations encourage investigation of the neurobiology of NRG3 isoforms and highlight inhibition of NRG3 signaling as a potential target for psychiatric treatment development.

Formats available

You can view the full content in the following formats:

Information & Authors

Information

Published In

Go to American Journal of Psychiatry
Go to American Journal of Psychiatry
American Journal of Psychiatry
Pages: 256 - 265
PubMed: 27771971

History

Received: 23 June 2016
Accepted: 30 June 2016
Published online: 24 October 2016
Published in print: March 01, 2017

Keywords

  1. Genetics
  2. Schizophrenia
  3. Mood Disorders-Bipolar
  4. Mood Disorders-Unipolar
  5. Neuregulin
  6. ErbB4

Authors

Details

Clare Paterson, Ph.D.
From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore.
Yanhong Wang, M.D.
From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore.
Thomas M. Hyde, M.D., Ph.D.
From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore.
Daniel R. Weinberger, M.D.
From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore.
Joel E. Kleinman, M.D., Ph.D.
From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore.
Amanda J. Law, Ph.D.
From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore.

Notes

Address correspondence to Dr. Law ([email protected]).

Competing Interests

Dr. Law has served as a paid consultant for AstraZeneca Pharmaceuticals. The other authors report no financial relationships with commercial interests.

Funding Information

National Institute of Mental Health10.13039/100000025: P50MH086383
Supported by funds from the NIMH Intramural Research Program to Dr. Law and Dr. Weinberger and by extramural funding from NIMH to Dr. Law (P50 MH086383); support was also provided by the Dr. Nancy Gary Endowed Chair in Children’s Mental Health Disorders held by Dr. Law.

Metrics & Citations

Metrics

Citations

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format
Citation style
Style
Copy to clipboard

View Options

View options

PDF/EPUB

View PDF/EPUB

Full Text

View Full Text

Login options

Already a subscriber? Access your subscription through your login credentials or your institution for full access to this article.

Personal login Institutional Login Open Athens login
Purchase Options

Purchase this article to access the full text.

PPV Articles - American Journal of Psychiatry

PPV Articles - American Journal of Psychiatry

Not a subscriber?

Subscribe Now / Learn More

PsychiatryOnline subscription options offer access to the DSM-5-TR® library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing [email protected] or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

Media

Figures

Other

Tables

Share

Share

Share article link

Share