Skip to main content
Full access
Articles
Published Online: 2 June 2021

Receipt, Spending, and Clinical Correlates of the Economic Impact Payment Among Middle- and Low-Income U.S. Adults

Abstract

Objective:

This study examined characteristics and planned expenses of U.S. adults who received the economic impact payment (EIP) during the COVID-19 pandemic.

Methods:

Using a nationally representative sample of 6,607 middle- and low-income U.S. adults, the authors examined the proportion and correlates of EIP receipt among eligible adults and the associations among planned EIP-financed expenses, challenges with paying expenses, and clinical characteristics.

Results:

Of the sample, 78.8% reported that they received the EIP, and 82.3% of EIP recipients reported that it had a positive impact on their life. Being a veteran (odds ratio [OR]=2.59), being married (OR=1.82), having a history of schizophrenia spectrum disorder (OR=1.74) or posttraumatic stress disorder (OR=1.51), and screening negative for recent suicidal ideation (OR=0.49) were associated with EIP receipt. Planned expenses with the EIP were savings, paying debt, and rent and accounted for 63.4% of the total amount. Screening positive for mental health or drug use problems was positively associated with greater planned expenses for substances and gambling. EIP receipt also was associated with fewer problems paying daily expenses, but participants who screened positive for mental health or alcohol use problems were more likely to report problems paying past-month daily expenses.

Conclusions:

Unconditional cash transfers such as the EIP may be important for sustaining the living situation of middle- and low-income populations. The management of funds is important to consider, especially among adults experiencing mental health and substance abuse problems, and such cash transfers may represent opportunities for financial literacy and money management interventions.

Highlights

• Most middle- and low-income adults received the economic impact payment (EIP) and reported that it had a positive impact on their life.
• Having a history of schizophrenia and posttraumatic stress disorder was associated with EIP receipt, but those who reported recent suicidal ideation were less likely to have received the EIP.
• Current mental health and alcohol use problems were both associated with greater problems paying daily expenses in the past month, which receipt of the EIP mitigated.
Historically, disparities in access to care and assistance have been well documented among low-income adults with mental illness and substance use disorders (1, 2). These disparities have been found to be exacerbated during major events such as natural disasters, economic recessions, and pandemics (3, 4). The COVID-19 pandemic has particularly affected racial-ethnic minority, low-income, and homeless populations (59). Passage of the Coronavirus Aid, Relief, and Economic Security Act in 2020 authorized the U.S. government to provide a one-time unconditional cash transfer called an economic impact payment (EIP) (10) to middle- and low-income adults. The EIP provided $1,200 by direct deposit or mailed check to adults with annual taxable personal incomes up to $75,000 (10). The extent to which the EIP was distributed to low-income adults with mental illness has not been studied from a disparities framework.
Two previous studies found that the EIP increased household spending on payments such as food, rent, mortgages, and credit cards (11). Most recipients did not spend all of their EIP, but those who were unemployed or of lower socioeconomic status spent more (12). However, these studies did not examine the association of mental health characteristics with EIP receipt or related expenses. Although some federal cash benefit programs (e.g., Supplemental Security Income) have been extensively studied in the United States (13), little research has looked at one-time unconditional cash transfers such as the EIP. The international literature has found that conditional and unconditional cash transfers can improve mental health (14), but most studies have been conducted in developing countries (15, 16). Thus, the question remains as to whether adults with mental illness experience disparities in accessing one-time cash transfer programs such as the EIP and how they plan to use EIP funds after receipt. Answering this question may help ensure that programs such as the EIP benefit those in need and determine the need for targeted supportive interventions to maximize those benefits.
In this study, we drew on a nationally representative sample of middle- and low-income U.S. adults who were eligible for the full EIP amount to examine the extent to which eligible adults received the EIP, compare sociodemographic and clinical differences between those who did and did not receive the EIP, and explore planned EIP expenses and associations with clinical and psychosocial characteristics.

Methods

From May 20 to June 20, 2020, a national sample of 6,607 middle- and low-income U.S. adults were recruited and compensated with online cash credits through Amazon Mechanical Turk (MTurk), an online labor market with >500,000 participants. Participants were asked to complete an online assessment that included self-designed measures along with validated measures of health and social well-being during the COVID-19 pandemic. Inclusion criteria for the study were as follows: U.S. adults who were ages ≥22 years, reported an annual personal income of ≤$75,000, had completed ≥50 previous tasks (called Human Intelligence Tasks [HITs]) on MTurk, had an HIT approval rating of ≥50%, and passed validity checks (using four validity questions from the Minnesota Multiphasic Personality Inventory–2). A total of 9,760 individuals initially enrolled; 6,762 (69.3%) met eligibility criteria, but 155 failed validity checks. Therefore, the final sample consisted of 6,607 participants from all 50 U.S. states and the District of Columbia. Results from cross-sample investigations have indicated that data obtained from MTurk are of the same or higher quality than those obtained from traditional subject pools, especially when eligibility requirements and validity checks are used (17). Although we did not perform stratified or probability-based sampling, we used raking procedures (18) to compute and apply poststratification weights so that our sample would be nationally representative of the U.S. middle- and low-income adult population with respect to age, gender, race, ethnicity, and geographic region, according to the 2018 American Community Survey. All participants provided informed consent, and study procedures were approved by the institutional review board at the University of Texas Health Science Center at Houston.

Measures

Sociodemographic information was assessed with a questionnaire. Veteran status was defined as “ever served on active duty in the U.S. military,” and history of homelessness was defined as “ever not have a stable night-time residence (such as staying on streets, in shelters, cars, etc.).”
EIP receipt was assessed by asking participants, “Have you heard of the coronavirus stimulus checks (also called ‘economic impact payments’)? These are checks up to $1,200 per individual that the government is sending to individuals in response to the coronavirus and city shutdown.” Participants were provided with three response options: “Yes, I’ve heard of it and have received mine,” “Yes, I’ve heard of it but have not received mine,” and “No, I’ve never heard of it.” Participants who reported receiving the EIP were further asked how they received it (i.e., check in the mail, direct deposit into back account, or other method). They were also asked to report in specific dollar amounts what they planned to spend their EIP on among 18 categories of daily living (e.g., rent, transportation, alcohol, and savings). In addition, participants were asked to respond to the question, “How helpful would you say the stimulus check has been for your life?” on a 5-point scale, ranging from 1, strongly negative impact, to 5, strongly positive impact.
Financial problems were assessed by asking participants whether they had run “out of money to pay for any of the following” in the past month, followed by checkboxes for none, rent or mortgage, utilities, food, transportation, clothing, and medical care. COVID-19 testing and infection status was assessed by asking participants whether they had been tested for COVID-19 and what the outcome was (i.e., positive, negative, not tested). Social support was assessed with the Medical Outcomes Study Social Support Survey–Short Form (19), which consists of six items that are summed for a total global score of functional social support. General medical health status was assessed by asking participants whether they had ever been diagnosed as having any of 22 different medical conditions (e.g., cancer, heart disease, or arthritis); the total number of medical conditions was summed (20).
Psychiatric history was assessed by asking participants whether they had ever been diagnosed as having any of nine psychiatric or substance use disorders. Current mental health and substance use was assessed with the Patient Health Questionnaire–2 (PHQ-2) (21), the Generalized Anxiety Disorder–2 (GAD-2) (22), the Alcohol Use Disorders Identification Test–Consumption (AUDIT-C) (23), and a suicidal ideation item from the Mini–International Neuropsychiatric Interview (24). Participants were also asked whether they had used any illicit drugs in the past month. For this study, Cronbach’s α was 0.83 for the PHQ-2, 0.84 for the GAD-2, and 0.74 for the AUDIT-C.
To assess COVID-19 era–related stress, the Posttraumatic Stress Disorder Checklist for the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition (PCL-5 [25]) was administered. Because COVID-19 may not qualify as a traumatic event (26), we used the PCL-5 to determine COVID-19 era–related stress instead. Participants were asked to “think about your experience with COVID-19 and the current situation” (which could include the viral pathogen, personal loss, business lockdowns, or other aspects of the pandemic) and to rate the degree to which they experienced each of 20 symptoms over the past month on a scale ranging from 0, not at all, to 4, extremely. Internal consistency of the scale was excellent (Cronbach’s α=0.98). A supplementary item, “Did these reactions cause you distress or result in a failure to fulfill obligations at home, work, or school?” was administered to assess distress and dysfunction related to symptoms; it was rated on the same 0–4 scale with the same 1-month time frame. For this study, a positive screen for COVID-19 era–related stress was determined by PCL-5 responses that corresponded to posttraumatic stress disorder (PTSD) criteria according to the DSM-5 (26), which included at least one item each from criteria B and C, two items each from criteria D and E, and endorsement of criterion G (26). Items rated 2 (“moderately”) or higher were considered indicative of positive symptom endorsement (27).

Data Analysis

First, we divided participants into those who reported that they did and did not receive the EIP. We then used t and chi-square tests to compare the groups on sociodemographic, clinical, and psychosocial characteristics. Next, we conducted logistic regression analyses to examine characteristics associated with EIP receipt. Descriptive analyses were conducted on participants’ planned expenses using the EIP, and exploratory Pearson correlation analyses were conducted to explore the association among EIP receipt, planned expenses, problems paying expenses, clinical characteristics, and participant ratings of the impact of the EIP. Given the large number of correlations conducted, we set statistical significance for these analyses at the 0.01 level and focused on effect size (i.e., r≥0.25) instead of merely statistical significance. The largest correlations were further analyzed with select multiple regression analyses. Finally, we conducted a series of logistic regression analyses in which EIP receipt, screening positive for mental health or alcohol use problems, and their interaction were entered as independent variables and problems paying expenses in different categories were entered as dependent variables.

Results

Of the total sample, 5,083 (weighted percentage=78.8%) reported that they received the EIP, and 1,524 (21.2%) reported that they did not. Among EIP recipients, 24.0% reported receiving their stimulus by mailed check, 75.4% received it by direct deposit, and 0.6% did not specify. Among EIP recipients, 82.3% rated the EIP as having a “slightly/strongly positive impact” on their lives, 12.7% indicated “no impact,” and 5.0% indicated a “slightly/strongly negative impact.”
As shown in Table 1, bivariate comparisons indicated that EIP recipients were more likely to have tested positive or been untested for COVID-19 and to have been given a diagnosis of schizophrenia spectrum disorder or PTSD, but they were less likely to have been diagnosed as having alcohol use disorder and less likely to screen positive for current major depression, generalized anxiety disorder, suicidal ideation in the past 2 weeks, COVID-19 era–related stress, or any illicit drug use in the past month.
TABLE 1. Bivariate comparison of adults who did and did not receive an economic impact payment (EIP) (N=6,607)a
 EIP (N=5,083)No EIP (N=1,524)Test of difference 
CharacteristicRaw NWeighted %Raw NWeighted %(F or χ2)df
Age, weighted M±SD49.3±12.7 46.2±11.7 F=51.31***1, 9998
Gender    χ2=11.11**1
 Male2,17141.880145.8  
 Female2,91258.272354.2  
Race-ethnicity    χ2=9.57*3
 White3,91878.61,08775.6  
 Black65911.923313.2  
 Asian3513.51344.4  
 Other1556.1706.7  
Education    χ2=62.02***3
 High school or below4459.21065.9  
 Some college97623.232617.9  
 Associate or bachelor’s2,53947.681652.1  
 Advanced degree1,12320.127624.0  
Student status    χ2=80.41***2
 Not a student3,96883.51,04275.1  
 Part-time3755.61467.4  
 Full-time74011.033617.4  
Marital status    χ2=87.86***2
 Single1,49322.867232.6  
 Divorced, single, or widowed53521.08919.4  
 Married or living with partner3,05556.276348.0  
No. of children who are minors (M±SD)1.61±1.01 1.65±.92.92F=4.30*1, 9998
Work status    χ2=7.92*2
 Half- or full-time3,59958.91,02658.0  
 Self-employed40110.31458.7  
 Not working1,08330.835333.3  
Personal income (in $,M±SD)35,142±22,563 33,135±23,888 F=14.10***1, 9998
State of residence    χ2=90.40***3
 Northeast94017.429714.6  
 Midwest1,03222.324814.6  
 South1,93937.257941.0  
 West1,17223.240029.7  
Veteran status67616.71409.8χ2=62.03***1
Any history of homelessness1,04118.030519.0χ2=1.081
MOS Social Support Surveyb (M±SD)21.3±6.1 20.9±5.9 F=5.02*1, 9998
COVID-19 status    χ2=30.22***2
 Untested3,52771.590765.9  
 Positive2834.4714.1  
 Negative1,27324.154629.9  
No. of medical conditions (M±SD).83±1.12 .86±.99 F=1.791, 9998
History of psychiatric disorders      
 Schizophrenia spectrum disorder2183.7422.4χ2=7.44*1
 PTSD5559.41297.0χ2=11.92**1
 Bipolar disorder4307.41186.7χ2=1.401
 Anxiety disorder1,59325.544925.0χ2=.301
 Major depression84814.426514.1χ2=.111
 Alcohol use disorder5669.722114.0χ2=32.18***1
 Drug use disorder2464.0814.5χ2=1.221
 TBI1071.6261.6χ2=7.44*1
Positive screen for COVID-19 era–related stress1,20418.648326.0χ2=58.27***1
Positive screen for major depression1,95432.269138.7χ2=32.30***1
Positive screen for generalized anxiety disorder1,98832.370038.4χ2=28.06***1
Past–2-week suicidal ideation1,44422.162034.0χ2=128.08***1
Positive screen for alcohol use disorder1,97135.363535.5χ2=.031
Any illicit drug use in past month1,16921.030623.5χ2=5.80*1
a
TBI, traumatic brain injury.
b
MOS, Medical Outcome Study. Social Support Survey scores ranged from 6 to 36, with higher scores reflecting greater social support.
*p<0.05, **p<0.01, ***p<0.001.
Table 2 shows the results of the logistic regression analyses, which revealed that being female, not being a student, not having a college degree, being married with children, employed, living in the Midwest, being a military veteran, testing positive for COVID-19, or having a history of schizophrenia spectrum disorder or PTSD were each independently and significantly associated with EIP receipt. Screening positive for COVID-19 era–related stress and past–2-week suicidal ideation were both associated with a lower likelihood of EIP receipt. The largest effects were being married (odds ratio [OR]=1.82), being a veteran (OR=2.59), having a history of schizophrenia spectrum disorder (OR=1.74) or PTSD (OR=1.51), and screening negative for recent suicidal ideation (OR=0.49).
TABLE 2. Logistic regression examining characteristics associated with receipt of economic impact paymenta
CharacteristicOR95% CI
Age1.001.00–1.01
Male (reference: female).82***.74–.92
Race-ethnicity (reference: White)  
 Black1.16.99–1.36
 Asian1.03.80–1.33
 Other.96.78–1.18
Education (reference: some college or below)  
 Associate or bachelor’s.66***.58–.74
 Advanced degree.59***.51–.69
Student status (reference: not a student)  
 Part-time.71**.58–.88
 Full-time.62***.53–.73
Marital status (reference: single)  
 Divorced, single, or widowed1.191.00–1.42
 Married or living with partner1.82***1.58–2.08
No. of minors in household.94*.88–.99
Work status (reference: half- or full-time)  
 Self-employed.87.72–1.05
 Not working.69***.61–.79
Personal income1.001.00–1.00
State of residence (reference: Northeast)  
 Midwest1.23*1.03–1.47
 South.73***.62–.84
 West.68***.58–.80
Veteran status (reference: nonveteran)2.59***2.15–3.12
Any history of homelessness (reference: no homelessness history)1.01.86–1.18
MOS Social Support Survey scoreb.99.99–1.00
COVID-19 status (reference: untested)  
 Positive1.14.85–1.51
 Negative.83**.74–.94
History of psychiatric disorders (reference: no psychiatric disorder)  
 Schizophrenia spectrum disorder1.74*1.24–2.44
 PTSD1.51***1.23–1.85
 Alcohol use disorder.78*.65–.93
 TBI.83.54–1.27
Positive screen for (reference: negative screen)  
 COVID-19 era–related stress.83*.71–1.00
 Major depression1.14.97–1.33
 Generalized anxiety disorder1.03.88–1.20
Past–2-week suicidal ideation (reference: no past 2-week suicidal ideation).49***.42–.58
Any illicit drug use in past month (reference: no illicit drug use in past month).98.86–1.12
a
TBI, traumatic brain injury.
b
MOS, Medical Outcomes Study.
*p<0.05, **p<0.01, ***p<0.001.
As shown in Table 3, among EIP recipients, the largest planned expenses using the EIP were for savings and paying debt and rent, which combined for a mean total of $761.00 (63.4%) of the total EIP amount. Much of the remaining funds were planned for other essentials, such as groceries, utilities, transportation, and medical care. EIP recipients planned only small expenses for alcohol, drugs, or gambling or lottery; they totaled a mean of $32.86, or 2.7% of the total amount.
TABLE 3. Correlational analyses between planned expenses using the $1,200 economic impact payment (EIP) and clinical or psychosocial variables
  Correlation with
Planned expenseM±SD ($)EIP receipt by direct depositHow helpful EIP is for your lifeAny psychiatric historyCurrent positive screen for major depressive disorderCurrent positive screen for generalized anxiety disorderPositive screen for COVID-19 era–related stressPositive screen for alcohol use disorderAny recent illicit drug use
Rent199±364.04.02.03*.08*.07*.05*.03−.01
Utilities48±114−.02−.03.13*.14*.15*.18*.04*.08*
Telephone or cell phone25±65−.06*−.13*.20*.22*.22*.25*.12*.19*
Groceries82±169.07*.02−.05*−.03−.02-.00.12*−.06*
Restaurants and dining18±25−.09*−.16*.19*.19*.23*.24*.16*.22*
Recreation and entertainment23±86−.10*−.06*.07*.08*.08*.10*.05*.09*
Toiletries16±46−.11*−.13*.24*.27*a.26*a.30*a.16*.25*a
Cigarettes11±35−.15*−.21*.28*a.30*a.28*a.32*a.24*.32*a
Alcohol12±38−.15*−.21*.27*a.31*a.29*a.31*a.29*a.32*a
Drugs11±45−.11*−.18*.19*.22*.21*.23*.15*.32*a
Gambling or lottery9.6±39−.14*−.20*.23*.28*a.26*a.28*a.17*.29*a
Transportation29±120−.02−.00.13*.10*.08*.09*.04*.09*
Clothing20±63−.09−.10*.20*.21*.21*.21*.11*.16*
Medical care28±109−.04−.03.10*.10*.10*.11*.02.05*
Pay debts185±362.02.14*−.10*−.11*−.08*−.10*−.10*−.03*
Saving377±494.04−.02−.16*−.18*−.20*−.20*−.14*−.16*
Miscellaneous107±279.02.05*−.01−.07*−.06*−.07*−.02−.04
a
Correlation coefficients ≥0.25.
*
p<0.001.
Exploratory correlational analyses revealed that screening positive for current major depressive disorder, generalized anxiety disorder, COVID-19 era–related stress, and recent illicit drug use had the strongest associations with greater expenses planned for toiletries, cigarettes, alcohol, and gambling (r≥0.25 for all associations). Greater planned expenses for phone and clothing were moderately associated with any psychiatric history and screening positive for current major depressive disorder, generalized anxiety disorder, and COVID-19 era–related stress (r≥0.20 for all associations). Expenses planned for drugs were also moderately associated with screening positive for major depressive disorder, generalized anxiety disorder, COVID-19 era–related stress, and any recent illicit drug use (r≥0.20 for all associations). In terms of participants’ ratings of the impact of the EIP on their lives, correlations showed that EIP impact ratings were negatively associated with planned expenses for cigarettes, alcohol, drugs, and gambling or lottery (r≥0.18 for all associations); expenses planned for paying debts were positively associated with EIP impact ratings.
For the strongest correlations we found (i.e., for those with r≥0.25), multiple regressions controlling for sociodemographic characteristics, number of medical conditions, and COVID-19 status confirmed the statistical significance of these associations (see Supplementary Table 1, available in an online supplement to this article). Additional correlational analyses (see Supplementary Table 2 in the online supplement) revealed that screening positive for current major depressive disorder, generalized anxiety disorder, COVID-19 era–related stress, and alcohol use disorder were each significantly associated with problems paying rent or mortgage (r=0.16–0.25), utilities (r=0.15–0.26), food (r=0.20–0.37), transportation (r=0.13–0.23), clothing (r=0.10–0.22), and medical care (r=0.07–0.18) in the past month. EIP receipt had small negative correlations with problems paying rent or mortgage, utilities, and food (r=−0.02 to −0.05).
Table 4 shows the results of logistic regression analyses on receipt of EIP, a positive screen for a mental health or alcohol problem, and their interaction in predicting problems paying expenses. There was only one significant interaction effect, which revealed that EIP receipt was significantly associated with fewer problems paying rent only for participants who did not screen positive for a mental health or alcohol problem.
TABLE 4. Logistic regression analyses including receipt of economic impact payment (EIP), screening positive for mental health or alcohol use problem, and their interaction in predicting problems paying expenses
 EIP receiptScreened positive for major depressive disorder, generalized anxiety disorder, COVID-19–era stress, or alcohol use disorderInteraction between EIP receipt and any positive screen for mental health or alcohol use problems
“Ran out of money in past month…”aOR95% CIOR95% CIOR95% CI
Paying rent or mortgage.80.55–1.166.49**4.53–9.321.04.69–1.57
Utilities.67*.49–.913.92**2.86–5.391.59*1.10–2.28
Food.70*.53–.927.34**5.57–9.671.30.95–1.78
Transportation1.05.66–1.676.18**3.89–9.811.08.64–1.80
Clothing.88.58–1.344.74**3.10–7.251.30.80–2.09
Medical care.92.59–1.434.99**3.19–7.791.11.67–1.83
None1.52**1.23–1.87.13**.11–.17.77*.60–.99
a
Reference group was “Did not run out of money in past month,” for each of the respective categories.
*p<0.05, **p<0.01.

Discussion

The majority of our sample of middle- and low-income U.S. adults reported that they had received the EIP and that it had a positive impact on their life. About one-fifth of the sample who were eligible for the EIP reported that they did not receive it during the study period, which is estimated to be roughly equivalent to >13 million U.S. households not having received the payment (28). Adjusting for sociodemographic and clinical characteristics, we found that vulnerable groups, including women, veterans, those with no college degree, and those who tested positive for COVID-19, were more likely to have received the EIP. In addition, adults with a psychiatric history of schizophrenia spectrum disorder or PTSD were also more likely to have received the EIP. One contributing factor may be that some of these vulnerable groups may already have been enrolled in federal programs such as Medicaid, Social Security, and Department of Veterans Affairs benefits, which made it easier for them to receive their EIP through direct deposit (10). This finding may have implications for future disbursement of cash transfers such as the EIP, although it is important to recognize that many vulnerable groups are also unbanked or underbanked (29) and may be disproportionately affected if payments are only available through direct deposit.
Adults who reported more COVID-19 era–related stress or any recent suicidal ideation were less likely to have reported receiving their EIP than those who did not report these mental health problems. The COVID-19 pandemic has had deleterious effects on mental health and well-being (3032), and it is well known that psychological distress can have a negative impact on daily functioning (3336). One possible explanation, then, is that some adults who were eligible for the EIP were too preoccupied with mental health problems to attend to means for receiving or accessing their EIP. Alternatively, it may be that those who did not receive the EIP struggled more financially as a result, which contributed to their greater mental health problems. We could not infer directionality or causality from our data, but our findings are consistent with those from a body of literature that has documented disparities among low-income adults with mental illness (14), which may be driven by both internal and external factors. Moreover, systematic reviews have found that mental illness can cause poverty, and poverty can also cause mental illness, which may work through theorized mechanisms such as limited cognitive bandwidth (14, 15). This was further supported by our finding that those who screened positive for mental health or alcohol use problems were more likely to report problems paying for daily basic expenses.
On average, participants planned to use 63.4% of EIP funds for savings and paying debt and rent. Most remaining funds were planned to be used for daily needs, such as groceries and transportation, suggesting that many middle- and low-income adults were planning to use their EIP to sustain their current living situation. These findings are consistent with those of two other studies that found that the EIP led to smaller increases in durable spending and larger increases in daily expenses and paying debts (11, 12). Together, these findings highlight the economic struggles of middle- and low-income adults during the COVID-19 pandemic and the potential benefits an EIP may provide.
Notably, greater mental health problems were associated with greater expenses planned on alcohol, drugs, and gambling, although this finding was not surprising, given that mental illness is often comorbid with addictive disorders (37). Moreover, participants who planned expenses in these categories were less likely to report that the EIP was helpful for their lives; those who planned to pay debts were more likely to report that the EIP was helpful. These findings, although exploratory, suggest that the impact of cash transfers such as the EIP may depend on how well equipped the recipient is to manage the funds. Money management interventions have been developed to help adults who have low income and mental illness or addictive disorders manage their funds (3840). It may be important to offer such interventions or include them as a component of a cash transfer program such as the EIP, especially for those with comorbid mental illness and substance use disorders. This area may be worthwhile to study in future programs, and future planning may also want to consider how participants receive cash transfers, because there is some evidence that this can affect spending patterns (41). For example, our exploratory analysis found that receiving the EIP as a direct deposit was correlated with greater planned expenses for paying debts versus other expenses such as alcohol, drugs, and gambling.
We note several limitations. The study was cross-sectional, and data were based on self-reports regarding the EIP. We assessed only planned expenses and not actual expenses, which may be particularly important in interpreting correlations between planned expenses on substance use and gambling, which relied on participants’ impulse control, so our findings need to be validated in a further study. We treated participants as individuals, but additional EIP funds were provided for larger households. These limitations were counterbalanced by the strengths of the study, including a nationally representative sample, inclusion of important sociodemographic and clinical variables, and results that contribute to timely information during the COVID-19 pandemic and the literature on unconditional cost transfers. Further research is needed to follow up EIP recipients over time to better understand long-term impacts, unintended consequences, and ways to build on the strengths of vulnerable populations.

Conclusions

For middle- and low-income adults, unconditional cash transfers, such as the EIP, are often used to sustain basic needs and may also present opportunities for financial education and money management interventions for adults with mental illness and substance use disorders.

Supplementary Material

File (appi.ps.202100001.ds001.pdf)

References

1.
Goldman ML, Spaeth-Rublee B, Pincus HA: The case for severe mental illness as a disparities category. Psychiatr Serv 2018; 69:726–728
2.
Bartels SJ, DiMilia P: Why serious mental illness should be designated a health disparity and the paradox of ethnicity. Lancet Psychiatry 2017; 4:351–352
3.
Davis JR, Wilson S, Brock-Martin A, et al: The impact of disasters on populations with health and health care disparities. Disaster Med Public Health Prep 2010; 4:30–38
4.
Margerison-Zilko C, Goldman-Mellor S, Falconi A, et al: Health impacts of the great recession: a critical review. Curr Epidemiol Rep 2016; 3:81–91
5.
Tsai J, Wilson M: COVID-19: a potential public health problem for homeless populations. Lancet Public Health 2020; 5:e186–e187
6.
Mahajan UV, Larkins-Pettigrew M: Racial demographics and COVID-19 confirmed cases and deaths: a correlational analysis of 2886 US counties. J Public Health (Oxf) 2020; 42:445–447
7.
Jay J, Bor J, Nsoesie EO, et al: Neighbourhood income and physical distancing during the COVID-19 pandemic in the United States. Nat Hum Behav 2020; 4:1294–1302
8.
Tsai J, Huang M, Elbogen EB: Mental health and psychosocial characteristics associated with COVID-19 Among US Adults. Psychiatr Serv (Epub ahead of print, Feb 3, 2021)
9.
Goodman L, Magder D: Avoiding a COVID-19 Disaster for Renters and the Housing Market. Washington, DC, Urban Institute, 2020
10.
Internal Revenue Service: Economic Impact Payments. Washington, DC, US Department of the Treasury, 2020. https://www.irs.gov/coronavirus/economic-impact-payments. Accessed Nov 15, 2020
11.
Baker SR, Farrokhnia RA, Meyer S, et al: Income, Liquidity, and the Consumption Response to the 2020 Economic Stimulus Payments. Cambridge, MA, National Bureau of Economic Research, 2020
12.
Coibion O, Gorodnichenko Y, Weber M: How Did US Consumers Use Their Stimulus Payments? Cambridge, MA, National Bureau of Economic Research, 2020
13.
Sun S, Huang J, Hudson DL, et al:. Cash transfers and health. Annu Rev Public Health. (Epub ahead of print, Jan 4, 2021)
14.
Ridley M, Rao G, Schilbach F, et al: Poverty, depression, and anxiety: causal evidence and mechanisms. Science 2020; 370:eaay0214
15.
Lund C, De Silva M, Plagerson S, et al: Poverty and mental disorders: breaking the cycle in low-income and middle-income countries. Lancet 2011; 378:1502–1514
16.
Hjelm L, Handa S, de Hoop J, et al: Poverty and perceived stress: evidence from two unconditional cash transfer programs in Zambia. Soc Sci Med 2017; 177:110–117
17.
Kees J, Berry C, Burton S, et al: An analysis of data quality: professional panels, student subject pools, and Amazon’s Mechanical Turk. J Advert 2017; 46:141–155
18.
Battaglia MP, Izrael D, Hoaglin DC, et al: Practical considerations in raking survey data. Surv Pract 2009; 2:1–10
19.
Holden L, Lee C, Hockey R, et al: Validation of the MOS Social Support Survey 6-item (MOS-SSS-6) measure with two large population-based samples of Australian women. Qual Life Res 2014; 23:2849–2853
20.
Thomas MM, Harpaz-Rotem I, Tsai J, et al:. Mental and physical health conditions in US combat veterans: results from the National Health and Resilience in Veterans Study. Prim Care Companion CNS Disord 2017;19
21.
Kroenke K, Spitzer RL, Williams JBW: The Patient Health Questionnaire–2: validity of a two-item depression screener. Med Care 2003; 41:1284–1292
22.
Plummer F, Manea L, Trepel D, et al: Screening for anxiety disorders with the GAD-7 and GAD-2: a systematic review and diagnostic metaanalysis. Gen Hosp Psychiatry 2016; 39:24–31
23.
Bush K, Kivlahan DR, McDonell MB, et al: The AUDIT alcohol consumption questions (AUDIT-C): an effective brief screening test for problem drinking. Ambulatory Care Quality Improvement Project (ACQUIP). Alcohol Use Disorders Identification Test. Arch Intern Med 1998; 158:1789–1795
24.
Sheehan DV, Lecrubier Y, Sheehan KH, et al: The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998; 59(suppl 20):22–33, quiz 34–57
25.
Weathers FW, Litz BT, Keane TM, et al: The PTSD Checklist for DSM-5 (PCL-5). Washington, DC, US Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, 2013. http://www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-checklist.asp. Accessed Nov 1, 2020
26.
Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Arlington, VA, American Psychiatric Publishing, 2013
27.
National Center for Posttraumatic Stress Disorder: DSM-5 Criteria for PTSD. Washington, DC, US Department of Veterans Affairs, 2014 http://www.ptsd.va.gov/professional/PTSD-overview/dsm5_criteria_ptsd.asp. Accessed Nov 1, 2020
28.
Age of Householder by Household Income in the Past 12 Months (in 2019 Inflation-Adjusted Dollars). Washington, DC, US Census Bureau, 2019 https://data.census.gov/cedsci/table?q=United%20 States%20income%20age&tid=ACSDT1Y2019.B19037&hidePreview=false. Accessed Nov 15, 2020
29.
Breitbach E, Walstad WB: Financial literacy and banking affiliation: Results for the unbanked, underbanked, and fully banked. Perspectives on Economic Education Research 2014; 9:20–35
30.
McKee M, Stuckler D: If the world fails to protect the economy, COVID-19 will damage health not just now but also in the future. Nat Med 2020; 26:640–642
31.
Krishnamoorthy Y, Nagarajan R, Saya GK, et al: Prevalence of psychological morbidities among general population, healthcare workers and COVID-19 patients amidst the COVID-19 pandemic: a systematic review and meta-analysis. Psychiatry Res 2020; 293:113382
32.
Salari N, Hosseinian-Far A, Jalali R, et al: Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Global Health 2020; 16:57
33.
Wagner SL, Koehn C, White MI, et al: Mental health interventions in the workplace and work outcomes: a best-evidence synthesis of systematic reviews. Int J Occup Environ Med 2016; 7:1–14
34.
Crowther RE, Marshall M, Bond GR, et al: Helping people with severe mental illness to obtain work: systematic review. BMJ 2001; 322:204–208
35.
Starcke K, Brand M: Decision making under stress: a selective review. Neurosci Biobehav Rev 2012; 36:1228–1248
36.
Staal MA: Stress, Cognition, and Human Performance: A Literature Review and Conceptual Framework. Moffett Field, CA, NASA Ames Research Center, 2004
37.
Murthy P, Chand P: Treatment of dual diagnosis disorders. Curr Opin Psychiatry 2012; 25:194–200
38.
Elbogen EB, Hamer RM, Swanson JW, et al: A randomized clinical trial of a money management intervention for veterans with psychiatric disabilities. Psychiatr Serv 2016; 67:1142–1145
39.
Tsai J, Ablondi K, Payne K, et al: Recovery-oriented money management for homeless veterans: a feasibility study. Am J Psychiatr Rehabil (in press)
40.
Rosen MI, Rounsaville BJ, Ablondi K, et al: Advisor-Teller Money Manager (ATM) therapy for substance use disorders. Psychiatr Serv 2010; 61:707–713
41.
Sahm CR, Shapiro MD, Slemrod J: Check in the mail or more in the paycheck: does the effectiveness of fiscal stimulus depend on how it is delivered? Am Econ J Econ Policy 2012; 4:216–250

Information & Authors

Information

Published In

Go to Psychiatric Services
Go to Psychiatric Services
Psychiatric Services
Pages: 1377 - 1384
PubMed: 34074140

History

Received: 1 January 2021
Revision received: 27 February 2021
Accepted: 4 March 2021
Published online: 2 June 2021
Published in print: December 01, 2021

Keywords

  1. Stimulus
  2. Mental illness
  3. Low income
  4. Socioeconomic disparities
  5. homelessness
  6. Income
  7. Recovery

Authors

Details

Jack Tsai, Ph.D. [email protected]
School of Public Health, University of Texas Health Science Center at Houston, Houston (Tsai); National Center on Homelessness Among Veterans, U.S. Department of Veterans Affairs, Tampa, Florida (Tsai, Montgomery, Elbogen); Department of Psychology, University of Hartford, West Hartford, Connecticut (Huang); School of Public Health, University of Birmingham at Alabama (Montgomery); Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (Elbogen)
Minda Huang, M.A.
School of Public Health, University of Texas Health Science Center at Houston, Houston (Tsai); National Center on Homelessness Among Veterans, U.S. Department of Veterans Affairs, Tampa, Florida (Tsai, Montgomery, Elbogen); Department of Psychology, University of Hartford, West Hartford, Connecticut (Huang); School of Public Health, University of Birmingham at Alabama (Montgomery); Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (Elbogen)
Ann Elizabeth Montgomery, Ph.D.
School of Public Health, University of Texas Health Science Center at Houston, Houston (Tsai); National Center on Homelessness Among Veterans, U.S. Department of Veterans Affairs, Tampa, Florida (Tsai, Montgomery, Elbogen); Department of Psychology, University of Hartford, West Hartford, Connecticut (Huang); School of Public Health, University of Birmingham at Alabama (Montgomery); Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (Elbogen)
Eric B. Elbogen, Ph.D.
School of Public Health, University of Texas Health Science Center at Houston, Houston (Tsai); National Center on Homelessness Among Veterans, U.S. Department of Veterans Affairs, Tampa, Florida (Tsai, Montgomery, Elbogen); Department of Psychology, University of Hartford, West Hartford, Connecticut (Huang); School of Public Health, University of Birmingham at Alabama (Montgomery); Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (Elbogen)

Notes

Send correspondence to Dr. Tsai ([email protected]).

Competing Interests

The authors report no financial relationships with commercial interests.

Funding Information

This study was supported by internal funds from the School of Public Health at the University of Texas Health Science Center at Houston.

Metrics & Citations

Metrics

Citations

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format
Citation style
Style
Copy to clipboard

View Options

View options

PDF/EPUB

View PDF/EPUB

Login options

Already a subscriber? Access your subscription through your login credentials or your institution for full access to this article.

Personal login Institutional Login Open Athens login
Purchase Options

Purchase this article to access the full text.

PPV Articles - Psychiatric Services

PPV Articles - Psychiatric Services

Not a subscriber?

Subscribe Now / Learn More

PsychiatryOnline subscription options offer access to the DSM-5-TR® library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing [email protected] or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

Media

Figures

Other

Tables

Share

Share

Share article link

Share