Skip to main content

Abstract

Objective:

The authors used resting-state functional connectivity MRI to evaluate brain networks in patients with refractory and nonrefractory major depressive disorder.

Method:

In a cross-sectional study, 28 patients with refractory major depression, 32 patients with nonrefractory major depression, and 48 healthy comparison subjects underwent scanning using a gradient-echo echo-planar imaging sequence on a 3-T MR system. Thirteen regions of interest that have been identified in the literature as relevant to mood regulation were selected as seed areas. A reference time series was extracted for each seed and used for voxel-wise correlation analysis with the rest of the brain. Voxel-based comparisons of z-value maps among the three groups were performed using one-way analysis of variance followed by post hoc t tests with age and duration of illness as covariates of no interest.

Results:

Relative to healthy comparison subjects, both patient groups showed significantly reduced connectivity in prefrontal-limbic-thalamic areas bilaterally. However, the nonrefractory group showed a more distributed decrease in connectivity than the refractory group, especially in the anterior cingulate cortex and in the amygdala, hippocampus, and insula bilaterally; in contrast, the refractory group showed disrupted functional connectivity mainly in prefrontal areas and in thalamus areas bilaterally.

Conclusions:

Refractory depression is associated with disrupted functional connectivity mainly in thalamo-cortical circuits, while nonrefractory depression is associated with more distributed decreased connectivity in the limbic-striatal-pallidal-thalamic circuit. These results suggest that nonrefractory and refractory depression are characterized by distinct functional deficits in distributed brain networks.
Substantial efforts have been made in the past decade to elucidate the neural basis of major depressive disorder. Structural and functional neuroimaging studies of patients with depression have revealed a complex neuropathophysiology involving regional deficits in the limbic-thalamo-prefrontal and limbic-striatal-pallidal-thalamic systems (19). About 30% of patients do not respond to standard antidepressant treatment and are classified as having refractory depression, while those who respond have nonrefractory depression (10). Little is known about how these two clinical subtypes differ at the neuronal level. We investigated the functional deficits in these two subtypes in the hope that noninvasive measurements might eventually make it possible to distinguish them at an early stage of clinical intervention. We recently (1) identified regional cerebral perfusion differences between these groups: the refractory group showed reduced perfusion in prefrontal and thalamic areas, while the nonrefractory group showed reduced perfusion in left frontal areas and increased perfusion in limbic-striatal areas. The effects of these regional alterations in resting perfusion on systems-level disturbances in distributed brain networks are of course impossible to predict. There is increasing evidence that neural networks are disrupted in depression (1115) as well as in other neuropsychiatric conditions, such as Alzheimer's disease (16), schizophrenia (17), and acute psychological trauma (18). However, no study has yet determined whether patients with refractory and nonrefractory depression can be distinguished by differential functional integration within specific neural networks.
Resting-state functional connectivity MRI (fcMRI) (19) has been increasingly used to investigate the integration of neural networks at a resting state when no task is performed (20). Low-frequency (0.01–0.08 Hz) fluctuations of the blood-oxygen-level-dependent (BOLD) signal in the resting state are considered to be physiologically meaningful and related to spontaneous neural activity (21). While task-based functional MRI (fMRI) studies can assess disturbances in functional connectivity when patients perform a particular task, assessment of resting-state connectivity has different and potentially broader significance, because it requires minimal patient compliance, can be obtained under anesthesia, and is well suited for translation into the clinical realm (19). This technique has been successfully used to detect abnormal functional integration in major depressive disorder (22).
As different regional alterations have been observed in patients with refractory and nonrefractory depression (1), we hypothesized that different systems-level disturbances would be observed in distributed brain networks. Our purpose, therefore, was to use resting-state fcMRI to quantify functional connectivity in 28 patients with refractory depression, 32 patients with nonrefractory depression, and 48 healthy comparison subjects.

Method

Participants

This study was approved by the local ethical committee, and written informed consent was obtained from all participants. The patients in the present analysis were part of a large cohort study of major depression in the Chinese population of Han nationality. Patients were recruited consecutively, and the diagnosis of major depressive disorder was made with the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID) (23). Exclusion criteria were bipolar disorder, any history of major illness, previous psychiatric therapy, cardiovascular disease, age less than 18 or over 60 years, use of vasoactive medications, and alcohol or drug abuse. Originally 82 right-handed patients were recruited, of whom 22 were excluded by the above criteria. Finally, 60 patients were included in the study, none of whom had received antidepressant treatment before enrollment. Severity of depression was quantified using the 17-item Hamilton Depression Rating Scale (HAM-D) (24) and the Clinical Global Impressions (CGI) severity item (25). To be included in the study, patients had to have a HAM-D total score ≥18 and a CGI severity score ≥4 on the day of MR scanning.
After MR imaging, antidepressant treatment was started for all patients. Three classes of antidepressants were used: tricyclics, typical serotonin-norepinephrine reuptake inhibitors, and typical selective serotonin reuptake inhibitors. All antidepressants were empirically prescribed according to the clinical judgment of the treating psychiatrist. No patient was treated with ECT or had received ECT in the past. Refractory depression is defined as a poor response after at least two trials with antidepressants from different classes, with adequate dosages, duration (6 weeks for each trial), and compliance (26, 27). A poor response is defined as a reduction of <50% in HAM-D score with a minimum dosage of 150 mg/day of imipramine or the equivalent for 6 weeks. This outcome measure was chosen because it allows simple analyses that aid interpretation, particularly from a clinical perspective. Nonrefractory patients are those who had a reduction >50% in HAM-D score after treatment.
In addition, 48 right-handed healthy comparison subjects were recruited from the local area by poster advertisements. Comparison subjects were screened using the non-patient edition of the SCID to confirm the lifetime absence of a history of psychiatric or neurological illness and were interviewed to exclude any family history of psychiatric illness.
All participants were found by two experienced radiologists to have no abnormalities on conventional MRI.

MRI Scanning

Patients and comparison subjects underwent scanning using a GE Signa EXCITE 3-T MR system (GE Healthcare, Milwaukee) with an 8-channel phased array head coil. During scanning, participants were instructed to relax with their eyes closed without falling asleep; after the experiment, each participant confirmed not having fallen asleep during scanning. Participants were fitted with soft earplugs and positioned carefully in the coil with comfortable support. MR images sensitive to changes in BOLD signal (repetition time=2,000, echo time=30 msec, flip angle=90 degrees) were obtained with a gradient-echo echo-planar imaging (EPI) sequence. Five dummy scans were discarded to remove the impact of magnetization stabilization. The slice thickness was 5 mm (no slice gap) with a matrix size of 64×64 and a field of view of 240×240 mm2, resulting in a voxel size of 3.75×3.75×5 mm3. Each brain volume comprised 30 axial slices, and each functional run contained 200 image volumes.

Data Processing and Analysis

Preprocessing and statistical analysis of functional images were carried out using the SPM2 software package (www.fil.ion.ucl.ac.uk/spm/). For each participant, EPI images were slice-time corrected, realigned to the first image in the first series, and unwarped to correct for artifacts due to susceptibility-by-movement interaction. The resulting images were spatially normalized to the Montreal Neurological Institute (MNI) EPI template in SPM2, and each voxel was resampled to 3×3×3 mm3. The processed images were smoothed with an isotropic Gaussian kernel (full-width at half-maximum=8 mm). Functional connectivity was examined using the Resting-State fMRI Data Analysis Toolkit (REST) software package (http://resting-fmri.sourceforge.net) using a seed voxel correlation approach (28, 29). As structural and functional studies in patients with depression have revealed regional deficits in the limbic-thalamo-prefrontal and limbic-striatal-pallidal-thalamic systems (19, 1115), we selected as seeds 13 areas that constitute these: the left and right hippocampus, insula, dorsal lateral prefrontal areas, amygdala, putamen, and thalamus and the anterior cingulate cortex. Using REST, after bandpass filtering (0.01–0.08 Hz) (21) and linear trend removal, a reference time series for each seed was extracted by averaging the fcMRI time series of voxels within each region of interest as defined in the WFU (Wake Forest University) PickAtlas (30, 31). The Ideal Filter was used for bandpass filtering by transforming the time series into the frequency domain by discrete Fourier transform, assigning a value of zero to the excluded frequency, and then transforming back to the time domain by inverse discrete Fourier transform. Thirteen correlation analyses were performed voxel-wise between each seed reference and the rest of the brain. Finally, the correlation coefficients in each voxel were transformed to z-value images using the Fisher r-to-z transformation to improve normality before averaging across subjects. Using SPM2, the impact of potential physiological artifacts such as cardiac or respiratory noise (32, 33) was minimized by regressing out components with high correlations with CSF or white matter or low correlations with gray matter.
For the patient data, individual z-value maps were analyzed with a random-effects one-sample t test to identify voxels showing a significant positive or negative correlation with the seed time series, the correlations being thresholded using a p<0.05 family-wise error correction for multiple comparisons. Voxel-based comparison of z-value maps among the three groups was performed using a design model of one-way analysis of variance with age and disease duration as covariates followed by post hoc two-sample t tests. The statistical significance of each region was estimated by distributional approximations from the theory of random Gaussian fields (34). In this method, clusters in smooth areas are shrunk while those in rough areas are expanded to account for differences in smoothness (34). Significance thresholds were set at 0.05 after family-wise error correction with an extent of more than five contiguous voxels. MNI coordinates were transformed to Talairach coordinates using mni2tal (http://imaging.mrc-cbu.cam.acuk/download/MNI2tal).

Results

Age, sex, and handedness were not significantly different between the patient groups and the comparison group. Depression severity (HAM-D score) was not significantly different between the refractory and nonrefractory groups, although the refractory group had the longer illness duration (Table 1) (p<0.05). Differences in HAM-D scores between male and female patients did not reach significance in either the refractory group (male: mean=23 [SD=4]; female: mean=22 [SD=3]) or the nonrefractory group (male: mean=24 [SD=3]; female: mean=24 [SD=4]), and depression severity was not correlated with age.
TABLE 1. Demographic and Clinical Characteristics of Patients With Nonrefractory and Refractory Depression and Healthy Comparison Subjects
CharacteristicPatients With Nonrefractory Depression (N=32)Patients With Refractory Depression (N=28)Healthy Comparison Subjects (N=48)
 N%N%N%
Female1134.41035.71735.4
 MeanSDMeanSDMeanSD
Age (years)321033113512
Illness duration (months)2218193120  
Hamilton Depression Rating Scale 
    Score before treatment23.04.723.34.1  
    Score after treatment11.22.619.63.1  

Voxel-Based Analysis Results

Relative to the comparison group, both the nonrefractory and refractory groups showed significantly reduced connectivity within prefrontal-limbic-thalamic areas bilaterally (Table 2). The nonrefractory group showed the more distributed decrease in connectivity, especially in the anterior cingulate cortex and the left and right prefrontal cortex, hippocampus, insula, and amygdala (Table 2, Figure 1A), while in the refractory group decreased connectivity was mainly in prefrontal areas and the thalamus areas bilaterally (Table 2, Figure 1B). Direct comparison between the groups showed decreased connectivity in the nonrefractory compared with the refractory group within the left amygdala-anterior cingulate cortex-right insula-precuneus region (Table 2, Figure 1C). These findings were not correlated with illness duration or age.
TABLE 2. Difference of Functional Connectivity Among Patients With Nonrefractory Depression, Patients With Refractory Depression, and Healthy Comparison Subjects
Talairach Coordinates
Seed AreaConnected LocationBrodmann's AreaxyzVoxel Sizepa
Comparison group > nonrefractory group 
Anterior cingulate cortexLeft middle temporal gyrus7–42–63643<0.001
 Left parietal cortex5–21–4848180.015
 Right inferior frontal gyrus471815–2437<0.001
Left amygdalaLeft cingulate cortex240327290.007
Left frontalRight insula13421518250.008
 Right cingulate cortex329302739<0.001
 Left cingulate cortex24–3024320.006
Left hippocampusCingulate cortex330924100.035
 Left putamen –16912200.013
 Left parietal cortex40–24–455446<0.001
Left insulaPrecuneus7–18–4848330.005
 Right parietal cortex521–395160.044
 Left middle temporal gyrus38–360–15350.002
 Right occipital cortex1851–21690.039
 Right cingulate cortex316–514537<0.001
Left thalamusRight inferior frontal gyrus4530279360.001
Right amygdalaLeft cingulate cortex24–3–92740<0.001
Right insulaRight hippocampus 300–24350.001
 Left insula –39–212442<0.001
 Right occipital cortex 24–8715300.004
 Precuneus7–18–484842<0.001
 Right middle temporal gyrus3930–5730210.011
Right putamenPrecuneus7–18–484844<0.001
Right thalamusCingulate cortex330924310.006
Right hippocampusRight inferior frontal gyrus45451812170.016
 Right insula134201870.043
 Left cingulate cortex23–3–1530200.013
Comparison group > refractory group 
Left frontalPrecuneus7–27–5151190.01
 Right parietal cortex4039–395138<0.001
Left thalamusRight insula133024950.051
 Right putamen 17711150.022
 Right cingulate cortex3233051180.014
 Left middle frontal gyrus9–212933200.011
Left hippocampusLeft middle temporal gyrus37–54–57–27190.013
Right insulaPrecuneus721–6333110.033
 Cingulate cortex3115–4524260.007
Right putamenLeft middle frontal gyrus8–331842280.003
 Right inferior frontal gyrus936924130.034
Right thalamusRight inferior frontal gyrus936927100.045
 Left middle frontal gyrus9–63036200.008
 Left putamen –18129190.009
 Right insula1330216140.025
Refractory group > nonrefractory group 
Left amygdalaCingulate cortex240182737<0.001
Right insulaCingulate cortex3115–4524260.007
 Precuneus721–6333120.033
a
Corrected for multiple comparisons with family-wise error correction.
FIGURE 1. Difference of Functional Connectivity Map for Patients With Nonrefractory and Refractory Depression and Healthy Comparison Subjectsa
a All p values are <0.05, corrected. The blue lines show decreased functional connectivity. In panel A, patients with nonrefractory depression showed decreased connectivity relative to healthy comparison subjects mainly in limbic-striatal-pallidal-thalamic circuits, including the anterior cingulate cortex and the left and right prefrontal cortex, hippocampus, insula, and amygdala. In panel B, patients with refractory depression showed decreased connectivity relative to healthy comparison subjects mainly in thalamo-frontal circuits, including prefrontal and thalamus areas bilaterally. In panel C, direct comparison between the refractory and nonrefractory groups showed decreased connectivity in the left amygdala-anterior cingulate cortex-right insula-precuneus in the nonrefractory group. ACC=anterior cingulate cortex; Put=putamen; Tha=thalamus; Hip=hippocampus; Amy=amygdala; IF=inferior frontal gyrus; MF=middle frontal gyrus; MT=middle temporal gyrus.

Discussion

Using resting-state fMRI in a cohort of patients with well-characterized depression, studied before commencement of medication, we found altered functional connectivity mainly involving the frontal-subcortical circuits, which are strongly implicated in depression (35). Furthermore, we observed differences in functional connectivity related to treatment responsiveness, with the nonrefractory group showing a decrease mainly in the limbic-striatal-pallidal-thalamic circuits (Figure 1A), while the refractory group showed a decrease mainly in thalamo-cortical circuits (Figure 1B).
Convergent evidence from functional brain imaging, therapeutics, and lesion studies suggests that depression is associated with dysfunction in several functionally integrated pathways (36, 37). More specifically, a loss of top-down regulation, especially the loss of prefrontal cortex control over limbic regions, is thought to be at the root of the pathogenesis of emotional, behavioral, cognitive, and endocrine changes in depression (38, 39). Consistent with this hypothesis, reduced fronto-limbic connectivity has been reported in both task (40, 41) and resting-state (42) fMRI studies in patients with depression, although results have been inconsistent, with reports of both increased and decreased connectivity. Our results confirmed the decrease in connectivity involving the prefrontal cortex in a cohort of 60 patients with depression. Furthermore, this decreased connectivity was more widespread in the group with nonrefractory depression than in the group with refractory depression.
The limbic system has widespread connections to the prefrontal cortex, amygdala, and thalamus (43), and it plays a critical role in anxiety and depressive states (44) in addition to its contribution to learning and memory. In the patients with nonrefractory depression, connectivity was decreased among distributed limbic areas, particularly in the anterior cingulate cortex and in the prefrontal and insula regions bilaterally (Figure 1A). The same network of regions was identified in a recent meta-analysis of cortical-subcortical interactions in emotion processing (45). Thus, it may be that decreased connectivity in this network underlies emotional dysregulation in these patients. The insula is thought to mediate interpretation of sensory information from the body (interoception) that contributes to emotional states (46). Decreased connectivity in this circuit might therefore underlie such depressive symptoms as somatic complaints and negative bias in interpreting bodily feedback.
This decreased functional connectivity between prefrontal and limbic networks in the group with nonrefractory depression may also account for the inverse relationship of activation between prefrontal lobe and limbic regions reported in previous studies (1, 40). Prefrontal cortical-limbic connectivity serves as an inhibitory link between those regions and is reduced in depression (47). The consequent disinhibition might account for the overactivity of the limbic system in the group with nonrefractory depression. This in turn might stimulate the hypothalamic-pituitary-adrenal axis (48, 49), and consequent glucocorticoid oversecretion could contribute to loss of frontal lobe integrity (50). Such decreased connectivity has been reported to improve after 6 weeks of treatment with sertraline in responders (51) and may have a genetic basis, for example, in the 5-HTTLPR allele (52).
The finding of decreased functional connectivity in the group with nonrefractory depression relative to the group with refractory depression (Figure 1C) is surprising, as one might have expected more impaired connectivity in the latter. However, this finding is not implausible in light of previous neuroimaging studies suggesting that functional alterations may be specifically present in nonrefractory patients. For example, in an investigation using arterial spin-labeling MRI (1), we found that patients with nonrefractory depression but not those with refractory depression showed altered perfusion in the limbic system relative to healthy comparison subjects. One possibility is that alterations in nonrefractory patients are localized within the limbic system, which is also the target of standard antidepressants (53), whereas alterations in refractory patients are expressed in a thalamo-cortical circuit, which may be less sensitive to antidepressant medication (53). This would explain why pharmacological treatment is effective in only one clinical group even though both groups show altered brain functioning.
Despite this at-first-sight surprising result of direct comparison between the refractory and nonrefractory groups, the comparisons between each patient group and healthy comparison subjects appeared to suggest more disrupted alterations of functional connectivity in the refractory than in the nonrefractory group in prefrontal areas and in the thalamus areas bilaterally (Figure 1B). This is consistent with results of previous studies (5456) suggesting greater disruption within thalamo-frontal circuits in refractory depression relative to nonrefractory depression. For example, more severe frontal deficits are reported in patients with late-onset depression associated with frontal vascular disease (57), who have higher rehospitalization rates and treatment resistance (58). Also, therapeutic intervention targeting frontal areas has been reported to be useful in refractory patients (59, 60) and to be correlated with clinical improvement (61). Finally, increased thalamic metabolism has been reported in remitted depressed patients after tryptophan depletion but not after sham depletion (62). Abnormal functional connectivity between thalamus and medial prefrontal regions has also been found to be associated with refractoriness (22). These findings, together with the results of our investigation, suggest that refractory depression may be mainly associated with disrupted connectivity in thalamo-cortical circuits. This may partly explain why patients with refractory depression are refractory to standard antidepressants but respond well to treatments targeting frontal areas (5961).
Several study limitations should be considered when interpreting these results. First, the data are cross-sectional; whether these altered neural networks change dynamically after therapy remains to be established in longitudinal studies. Second, patients were treated with a drug belonging to one of three different classes with heterogeneous pharmacological profiles. This heterogeneity limits the translational value of our results since the same patient may show a poor response to one drug class and a good response to another. Future studies aimed at informing clinical intervention will benefit from the investigation of a single drug, or at least drugs with the same pharmacological profile. Finally, the refractory group had a greater illness duration than the nonrefractory group. Although we used illness duration as a covariate in the statistical analysis, we cannot exclude the possibility that our results were influenced by this variable. Again, a longitudinal approach would allow examination of whether and how these altered neural networks change with the development of the illness.

Footnote

Received Oct. 4, 2010; revision received Dec. 4, 2010; accepted Dec. 20, 2010.

Supplementary Material

File (ajp_168_06_642_01.pdf)

References

1.
Lui S, Parkes LM, Huang X, Zou K, Chan RC, Yang H, Zou L, Li D, Tang H, Zhang T, Li X, Wei Y, Chen L, Sun X, Kemp GJ, Gong QY: Depressive disorders: focally altered cerebral perfusion measured with arterial spin-labeling MR imaging. Radiology 2009; 251:476–484
2.
Bench CJ, Friston KJ, Brown RG, Scott LC, Frackowiak RS, Dolan RJ: The anatomy of melancholia: focal abnormalities of cerebral blood flow in major depression. Psychol Med 1992; 22:607–615
3.
de Asis JM, Stern E, Alexopoulos GS, Pan H, Van Gorp W, Blumberg H, Kalayam B, Eidelberg D, Kiosses D, Silbersweig DA: Hippocampal and anterior cingulate activation deficits in patients with geriatric depression. Am J Psychiatry 2001; 158:1321–1323
4.
Saxena S, Brody AL, Ho ML, Alborzian S, Ho MK, Maidment KM, Huang SC, Wu HM, Au SC, Baxter LR: Cerebral metabolism in major depression and obsessive-compulsive disorder occurring separately and concurrently. Biol Psychiatry 2001; 50:159–170
5.
Ebmeier KP, Cavanagh JT, Moffoot AP, Glabus MF, O'Carroll RE, Goodwin GM: Cerebral perfusion correlates of depressed mood. Br J Psychiatry 1997; 170:77–81
6.
Bielau H, Trubner K, Krell D, Agelink MW, Bernstein HG, Stauch R, Mawrin C, Danos P, Gerhard L, Bogerts B, Baumann B: Volume deficits of subcortical nuclei in mood disorders: a postmortem study. Eur Arch Psychiatry Clin Neurosci 2005; 255:401–412
7.
Campbell S, Marriott M, Nahmias C, MacQueen GM: Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 2004; 161:598–607
8.
Coryell W, Nopoulos P, Drevets W, Wilson T, Andreasen NC: Subgenual prefrontal cortex volumes in major depressive disorder and schizophrenia: diagnostic specificity and prognostic implications. Am J Psychiatry 2005; 162:1706–1712
9.
Kim MJ, Hamilton JP, Gotlib IH: Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Res 2008; 164:114–122
10.
Stimpson N, Agrawal N, Lewis G: Randomised controlled trials investigating pharmacological and psychological interventions for treatment-refractory depression: systematic review. Br J Psychiatry 2002; 181:284–294
11.
Friedel E, Schlagenhauf F, Sterzer P, Park SQ, Bermpohl F, Strohle A, Stoy M, Puls I, Hagele C, Wrase J, Buchel C, Heinz A: 5-HTT genotype effect on prefrontal-amygdala coupling differs between major depression and controls. Psychopharmacology (Berl) 2009; 205:261–271
12.
Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD: Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 2009; 66:407–414
13.
Holmes AJ, Pizzagalli DA: Spatiotemporal dynamics of error processing dysfunctions in major depressive disorder. Arch Gen Psychiatry 2008; 65:179–188
14.
Yoshimura S, Okamoto Y, Onoda K, Matsunaga M, Ueda K, Suzuki S, Yamawaki S: Rostral anterior cingulate cortex activity mediates the relationship between the depressive symptoms and the medial prefrontal cortex activity. J Affect Disord 2010; 122:76–85
15.
Bluhm R, Williamson P, Lanius R, Theberge J, Densmore M, Bartha R, Neufeld R, Osuch E: Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin Neurosci 2009; 63:754–761
16.
Greicius MD, Srivastava G, Reiss AL, Menon V: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 2004; 101:4637–4642
17.
Lui S, Deng W, Huang X, Jiang L, Ma X, Chen H, Zhang T, Li X, Li D, Zou L, Tang H, Zhou XJ, Mechelli A, Collier DA, Sweeney JA, Li T, Gong Q: Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study. Am J Psychiatry 2009; 166:196–205
18.
Lui S, Huang X, Chen L, Tang H, Zhang T, Li X, Li D, Kuang W, Chan RC, Mechelli A, Sweeney JA, Gong Q: High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China. Proc Natl Acad Sci USA 2009; 106:15412–15417
19.
Fox MD, Greicius M: Clinical applications of resting state functional connectivity. Front Syst Neurosci 2010; 4:19
20.
Raichle ME, Mintun MA: Brain work and brain imaging. Annu Rev Neurosci 2006; 29:449–476
21.
Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 2001; 22:1326–1333
22.
Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 2007; 62:429–437
23.
First MB, Spitzer RL, Gibbon M, Williams JBW: Structured Clinical Interview for DSM-IV Axis I Disorders (SCID). Washington, DC, American Psychiatric Press, 1997
24.
Williams JBW: A structured interview guide for the Hamilton Depression Rating Scale. Arch Gen Psychiatry 1988; 45:742–747
25.
Guy W (ed): ECDEU Assessment Manual for Psychopharmacology: Publication ADM 76-338. Washington, DC, US Department of Health, Education, and Welfare, 1976, pp 218–222
26.
World Psychiatric Association: Symposium on Therapy-Resistant Depression. Pharmacopsychiatry 1974; 7:69–224
27.
Berlim MT, Turecki G: Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Can J Psychiatry 2007; 52:46–54
28.
Horwitz B, Rumsey JM, Donohue BC: Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA 1998; 95:8939–8944
29.
Friston KJ: Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 1994; 2:56–57
30.
Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT: Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000; 10:120–131
31.
Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19:1233–1239
32.
Dagli MS, Ingeholm JE, Haxby JV: Localization of cardiac-induced signal change in fMRI. Neuroimage 1999; 9:407–415
33.
Windischberger C, Langenberger H, Sycha T, Tschernko EM, Fuchsjager-Mayerl G, Schmetterer L, Moser E: On the origin of respiratory artifacts in BOLD-EPI of the human brain. Magn Reson Imaging 2002; 20:575–582
34.
Worsley KJ: An improved theoretical p value for SPMs based on discrete local maxima. Neuroimage 2005; 28:1056–1062
35.
Drevets WC, Raichle ME: Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol Bull 1992; 28:261–274
36.
Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ: Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry 2005; 57:1079–1088
37.
Mayberg HS: Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 2003; 65:193–207
38.
Savitz JB, Drevets WC: Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience 2009; 164:300–330
39.
Savitz J, Drevets WC: Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 2009; 33:699–771
40.
Siegle GJ, Steinhauer SR, Thase ME, Stenger VA, Carter CS: Can't shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry 2002; 51:693–707
41.
Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Boorman E, Matthews PM, Cowen PJ: Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol 2008; 11:255–260
42.
Anand A, Li Y, Wang Y, Lowe MJ, Dzemidzic M: Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res 2009; 171:189–198
43.
Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jäger M, Leinsinger G, Bottlender R, Hahn K, Möller H-J: Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 2002; 159:1112–1118
44.
Fountoulakis KN, Iacovides A, Gerasimou G, Fotiou F, Ioannidou C, Bascialla F, Grammaticos P, Kaprinis G: The relationship of regional cerebral blood flow with subtypes of major depression. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:537–546
45.
Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD: Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage 2008; 42:998–1031
46.
Craig AD: How do you feel? interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 2002; 3:655–666
47.
Dannlowski U, Ohrmann P, Konrad C, Domschke K, Bauer J, Kugel H, Hohoff C, Schoning S, Kersting A, Baune BT, Mortensen LS, Arolt V, Zwitserlood P, Deckert J, Heindel W, Suslow T: Reduced amygdala-prefrontal coupling in major depression: association with MAOA genotype and illness severity. Int J Neuropsychopharmacol 2009; 12:11–22
48.
Sanchez MM, Young LJ, Plotsky PM, Insel TR: Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primate brain. J Comp Neurol 1999; 408:365–377
49.
Strome EM, Wheler GH, Higley JD, Loriaux DL, Suomi SJ, Doudet DJ: Intracerebroventricular corticotropin-releasing factor increases limbic glucose metabolism and has social context-dependent behavioral effects in nonhuman primates. Proc Natl Acad Sci USA 2002; 99:15749–15754
50.
Gold SM, Dziobek I, Rogers K, Bayoumy A, McHugh PF, Convit A: Hypertension and hypothalamo-pituitary-adrenal axis hyperactivity affect frontal lobe integrity. J Clin Endocrinol Metab 2005; 90:3262–3267
51.
Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ: Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study. Neuropsychopharmacology 2005; 30:1334–1344
52.
Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR: 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005; 8:828–834
53.
Lopez JF, Chalmers DT, Little KY, Watson SJ: Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 1998; 43:547–573
54.
Clark CP, Brown GG, Archibald SL, Fennema-Notestine C, Braun DR, Thomas LS, Sutherland AN, Gillin JC: Does amygdalar perfusion correlate with antidepressant response to partial sleep deprivation in major depression? Psychiatry Res 2006; 146:43–51
55.
Clark CP, Brown GG, Frank L, Thomas L, Sutherland AN, Gillin JC: Improved anatomic delineation of the antidepressant response to partial sleep deprivation in medial frontal cortex using perfusion-weighted functional MRI. Psychiatry Res 2006; 146:213–222
56.
Kohn Y, Freedman N, Lester H, Krausz Y, Chisin R, Lerer B, Bonne O: 99mTc-HMPAO SPECT study of cerebral perfusion after treatment with medication and electroconvulsive therapy in major depression. J Nucl Med 2007; 48:1273–1278
57.
Matsuo K, Onodera Y, Hamamoto T, Muraki K, Kato N, Kato T: Hypofrontality and microvascular dysregulation in remitted late-onset depression assessed by functional near-infrared spectroscopy. Neuroimage 2005; 26:234–242
58.
Fujikawa T, Yokota N, Muraoka M, Yamawaki S: Response of patients with major depression and silent cerebral infarction to antidepressant drug therapy, with emphasis on central nervous system adverse reactions. Stroke 1996; 27:2040–2042
59.
Fregni F, Ono CR, Santos CM, Bermpohl F, Buchpiguel C, Barbosa ER, Marcolin MA, Pascual-Leone A, Valente KD: Effects of antidepressant treatment with rTMS and fluoxetine on brain perfusion in PD. Neurology 2006; 66:1629–1637
60.
Isenberg K, Downs D, Pierce K, Svarakic D, Garcia K, Jarvis M, North C, Kormos TC: Low frequency rTMS stimulation of the right frontal cortex is as effective as high frequency rTMS stimulation of the left frontal cortex for antidepressant-free, treatment-resistant depressed patients. Ann Clin Psychiatry 2005; 17:153–159
61.
Dougherty DD, Weiss AP, Cosgrove GR, Alpert NM, Cassem EH, Nierenberg AA, Price BH, Mayberg HS, Fischman AJ, Rauch SL: Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neurosurg 2003; 99:1010–1017
62.
Neumeister A, Nugent AC, Waldeck T, Geraci M, Schwarz M, Bonne O, Bain EE, Luckenbaugh DA, Herscovitch P, Charney DS, Drevets WC: Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 2004; 61:765–773

Information & Authors

Information

Published In

Go to American Journal of Psychiatry
Go to American Journal of Psychiatry
American Journal of Psychiatry
Pages: 642 - 648
PubMed: 21362744

History

Received: 4 October 2010
Revision received: 4 December 2010
Accepted: 20 December 2010
Published online: 1 June 2011
Published in print: June 2011

Authors

Details

Su Lui, M.D., Ph.D.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.
Qizhu Wu, Ph.D.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.
Lihua Qiu, M.D.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.
Xun Yang, Ph.D.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.
Weihong Kuang, M.D.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.
Raymond C.K. Chan, Ph.D.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.
Xiaoqi Huang, M.D.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.
Graham J. Kemp, M.A., D.M.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.
Andrea Mechelli, Ph.D.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.
Qiyong Gong, M.D., Ph.D.
From the Huaxi MR Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University; the Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University; the Institute of Psychology, Chinese Academy of Sciences, Beijing; the Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, U.K.; and the Department of Psychosis Studies, Institute of Psychiatry, King's College London.

Notes

Address correspondence and reprint requests to Dr. Qiyong Gong, Huaxi MR Research Center (HMRRC), Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; [email protected] (e-mail).

Funding Information

All authors report no financial relationships with commercial interests.Supported by grants 81030027, 30625024, and 30900361 from the National Natural Science Foundation of China and grant 2007CB512305/2 from the 973 Program of the National Research Program of China.

Metrics & Citations

Metrics

Citations

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format
Citation style
Style
Copy to clipboard

View Options

View options

PDF/EPUB

View PDF/EPUB

Login options

Already a subscriber? Access your subscription through your login credentials or your institution for full access to this article.

Personal login Institutional Login Open Athens login
Purchase Options

Purchase this article to access the full text.

PPV Articles - American Journal of Psychiatry

PPV Articles - American Journal of Psychiatry

Not a subscriber?

Subscribe Now / Learn More

PsychiatryOnline subscription options offer access to the DSM-5-TR® library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing [email protected] or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

Media

Figures

Other

Tables

Share

Share

Share article link

Share